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Abstract

An analytical method has been developed for the inverse problem in one- and

two-dimensional heat conduction, when the temperatures are known at an appropriate number of
the measuring points. On the basis of these known temperatures, a closed form solution is
determined for the transient temperatures by using Laplace transform technique. This method first
approximates the temperature data with a half polynomial power series of time. The resultant
expression for an objective temperature and heat flux are explicitly obtained in the form of power
series of time. Numerical results for some representative problems show that the surface
temperature and heat flux can be predicted for not only one- but also two-dimensional heat

conductions well by the present method.
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INTRODUCTION

A procedure to solve inverse heat transfer problem
(IHTP) is very important in determining unknown
surface temperature and heat flux from known values in
the body, which are usually measured as a function of
space and time. Especially, under the severe surface
conditions such as reentry of space vehicle and an
accident involving coolant breaks in the plasma-facing
components, a direct measurement of the heat flux or
temperature change on the surface is almost impossible
so that the prediction of these values cannot help
depending on the solution of IHTP. In addition,
several studies about IHTP have been carried out to
predict the transient surface conditions during
quenching a hot body. Recently, the IHTP has been
numerically treated and extended to multiple
dimensions with help of development of computing
architecture and improvement of computer capacities.
Several approaches about the IHTP (Alifanov, 1994 and
Beck, 1985) are summarized. Nevertheless, a theoretical
method using Laplace transformation has been still
interesting when the configurations involved are rather
simple such as rectangular and cylindrical shapes and
then the known boundary conditions are not
complicated, since the solution to the IHTP can be
explicitly derived predicting the surface conditions with
a simple functional form. As an example of analytical
method of one dimensional IHTP, a procedure using an
exact solution by Buggraf (1964) and a method using
Duhamel solution and Laplace transformation are
widely used. Shoji (1978) pointed out earlier that
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Laplace transformation is promising in treating one
dimensional IHTP. Imber (1974) and Imber and Khan
(1972) extended a procedure using Laplace
transformation for one dimensional IHTP to one for two
and three dimensional THTPs, since it is relatively
simple to extend two and three dimensional IHTPs for
the case that the geometrical configurations involved are
not complicated. As for numerical method, Heieh and
Su (1980), Bell (1984) and Lithouhi and Beck (1986)
solved two dimensional IHTP based on finite different
method, while Shoji and Ono (1988) based on boundary
element method. Huang and Tsai (1998) carried out an
analysis to arbitrary boundary problem by using
conjugate gradient method. Frankel et al. (1997) first
approximated the temperature change at a point using
polynomial series of Cheviseff, and then gave the
solution of IHTP by determining each coefficient of
polynomial series in order to minimize a weighted
residual in the governing equation. Recently, Monde
(2000), Monde et al. (2000) and Arima et al. (2001)
have succeeded in getting an analytical solution for
one-dimensional heat conduction using the Laplace
transformation and shows that the surface temperature
or the surface heat flux can be predicted accurately and
easily by using the analytical solution. The reason that
the Monde method prefers to the Shoji (1978) and
Imber (1974) ones, is that an approximate function
employs half polynomial series of time and take into
account of a time lag, and it is applicable for an initial
temperature distribution in a solid. It should be
mentioned finally that Monde and Mitsutake (2001)
proposed a new method based on success of this
analytical inverse solution which makes it possible to
measure thermal diffusivity and thermal conductivity
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more accurate and easier than that based on a direct
solution.

More recently, Monde et al. (2001) have applied his
method to two-dimensional case and derived an inverse
solution of heat conduction in finite rectangular
coordinate, showing that a good estimation of the
surface temperature as well as the surface heat flux were
obtained.

The objective of this paper is to review our recent
study of inverse problem in one- and two-dimensional
heat conductions.
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Fig. 1 Sketch illustrating inverse heat conduction
problem for one measuring point

ANALYSIS OF ONE DIMENSIONAL HEAT
CONDUCTION

One-dimensional heat conduction equation with
constant properties and no internal heat generation in a

solid as shown in Fig.l can be written in a
non-dimensional form as:
% LE0 200 (M
ar & [mE&° o0&

where, K = 0 corresponds to rectangular coordinate, K =
1 to cylindrical one, k = 2 to spherical one. For an initial
condition of 8 = 8, (§), Laplace transformation of Eq.
(1) becomes as:

g ®
_K ,,& ,,H—p9:—90
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It is possible to treat with Eq. (2) for rectangular or
cylindrical or spherical coordinate depending on k = 0,
1 or 2. However, the case for rectangular coordinate
namely Kk = 0 only will be discussed here, and the other
cases will be briefly written due to a limited space.

Initial Temperature Distribution

The temperature in the solid has been in a steady state
where 00 /0T = 0, before transient heat conduction will
start. Therefore, the initial temperature distribution in
the solid with heat generation of g, can be generally
given for three different coordinates by the following
equation.

2% _
0¢8>
(€))

The initial temperature distribution can be easily
given by a quadratic function as:

9,

90 (5) = a, + alE +a2£2 (4)

The three constants of ag, a;and a, are determined from
a given steady state condition.

General Solution

The general solution of Eq. (2) with initial temperature
distribution, g, (&), can be easily given as:

6,($) + 2& &)

2

0(&,5)=Ae™™ + Be't +
N s
where p®= s, and s is Laplace’s operator and A, B are
integral constants subject to surface conditions.

Solution for Finite Body

In the case of IHTP for a finite plane, two known
temperatures in the plate are necessary at least to close
Eq.(5). Therefore, let the two temperatures at two
different points of & = ¢, & (&, < &,) be as:

0(&,,5)=/,(s), n=12
(6)
Substitution of Eq. (6) in Eq. (5) gives

n=1,2 (7)

After determining the constants of 4, B in Eq. (7) and
then substituting the values of 4, B into Eq.(5), we can
obtain the temperature in the body as follows:
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= Jsint{p@, ~&} - fi)sinhlp(E - £}
sinh{p(¢, -}
(6,(5)/ 5 +2a,/ s*)sinh{p(E, ~ £} ®)
sinh{p(&, - &}
L 6,(&)/s +2a,/5°)sinh{p(&, - &}
sinh{p(&, - &}

97(5,5

6,(&,) , 24,

2
N A

+

and the surface temperature can be easily obtained by
setting £ =0 as:

8.(s) = Ji(s)sinh(p&,) = f,(s)sinh(pé,)
sinh{p(&, - &}
_(6,(&)/5 +2a, /sz)sinh(pfz)
sinh{p(&, —&,}
(6,(&,)/s +2a, /sz)sinh(pfl)
+
sinh{p({2 —{l)}

+ Fi(a,a,,5)

)

Likewise, the solution for the heat flux can be also
obtained as:

fi(s)cosh{p(&, =&} = f(s)cosh{p(&, - &}
sinh{p(£, - &}
(6,&)/ s +2a, /5" cosh{p(E, ~ &} (10)
P sinh{p(&, ~&,}
4 Bu(&) /s +2a, /5%y cosh{p(&, — £}
p N
sinh{p(&, - & }

D¢, s5)=p

oL 4
N N

where, $.5)=-08(¢.5)/0¢
The surface heat flux becomes,

. (5) = Phs)eosh(p&,) ~ pfy(s) cosh(pé))
" sinh{p(&, - &}
_ (6,(8)/s +2a, /SZ)PCOSh(pfz)
sinh{p(&, - &}
+ 6,(¢,)/s +2a, /sz)pcosh(pfl)
sinh{p(&, - &}

+Gi(a;, 9)
(1D

where, Fi(ao, a», s) and G,(a,, s) are function of initial
temperature distributions (see Appendix I)

Approximate Equation for Temperature at a
Measuring Point

In order to perform inverse Laplace transformation of
Egs. (9) and (11), we first have to give the known
functions, £ (s), @=1,2 included in 6,(s) and
@, (s), explicitly. By the way, the subsidiary function of
fo(D) can be determined so as to approximate
temperature changes at two different measuring points
of €= & and &, respectively.
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Any function f;(7) is available in approximating the
temperature change. Therefore, Monde (2000) tried
some different kinds of functions on which the
something of IHTP depends and finally recommended
half polynomial series of time with a time lag as given
by Eq. (12), since Eq. (12) can give the best estimation
among them.

k
2

T-1,)%, (12)

Al bk n
f@= :

_— n=1,2
F(k/2+1)

where, coefficients b, can be determined by using, for
example, the least mean square method from the
measured temperature and N gives number of terms of
polynomial series. This time lag 7, can be determined
from erfc (&/2V1,) = min (6). The reason why
polynomial series of time is recommended is that a
general solution for one dimensional heat conduction is
provided in functional form of 8 = (&A1)
The subsidiary form of Eq. (12) is easily obtained as:

(13)

N
f,()=e"" S b, [s®2D =12

After substituting Eq. (13) into Egs. (9) and (11),
one performs inverse Laplace transformation to give the
surface temperature and heat flux. However, even if one
performs this inverse transformation exactly, we can
only know the estimated solution of surface temperature
and heat flux for 7> 1, because the solution always
diverges as T — 0. Therefore, in order to follow another
way rather than direct inverse Laplace transformation of
Egs. (9) and (11) , we first expand hyperbolic functions
in Egs. (9) and (11) in a series around s = 0, and then
perform inverse Laplace transformation to obtain the
approximate solutions (Monde, 2000).

Approximate Equation of Inverse Problem Solution
The approximate equations for surface temperature and
heat flux can be obtained by performing inverse Laplace
transformation of Egs. (9) and (11) as:

N .
0.(0)=SC, -1y +1
L(T) ,,»:Zl (T =T)) (2 )

o (14)
- jZle,n(T - Tz) /r(g +1)
+W(a,)
_ < N2 i
2,(1) _jZ]Dj,IZ(T T,) /F(2 +1)
(15)

N .
=3 D@-ny T+
= 2
+Y(a,)

The coefficients of Cj’ 125 Cj’ 21, Dj’ 125 Dj’ 21, W(az),
Y(a,) in Egs. (14) and (15) are listed in Appendices I
and II. When we set a, = 0, all coefficients of W(a,) and
Y(a;) become 0. Then, Egs. (14) and (15) become the
approximate ones for the initial temperature distribution
6y being constant (or 0). In other words, the
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approximate equation for the initial temperature with
linear temperature distribution is the same as that with
constant temperature distribution.

It should be noted that the initial temperature
distribution has been held in the finite plane but it is
never held in the semi-infinite body. Therefore, the
effect of initial temperature condition is not necessary to
be discussed.

Procedure to Solution in Cylindrical and Spherical
Coordinates

How to obtain the inverse solutions in cylindrical and
spherical coordinates are explained here briefly, since
they are identical to the method for rectangular case.

The initial temperature distributions at a steady state

can be expressed in cylindrical and spherical
coordinates as:
6,() =a, +a, lné"'azéz (16)
6,(8)=a, +a,/&+a,é’ (17)

And the inverse solutions of surface temperature and
heat flux on cylindrical coordinate can be expressed as,

6, = 1)K ,(8) = f()K, () = (6,(§))/ s +4ay / s)K, ,(s)
+(6,(&,) /s +4a, /SZ)Kl,l(S) +Fy(ay,a,,5)

(18)

D, = [{(9)K, ,(5) = [1()K,,(5) = (6,(§)) /s + 4a, /5K, , (s)
+(6,(,)/s +4a, /SZ)KZYI(S) +G,(a,,a,,s)

(19)

where, K (s), Kia(s), Kz1(s), Ky(s) are called “the
kernels” of Eqgs. (18) and (19) (See Appendix II), the
functions of F, (ay, a,, s) and G, (a;, a,, s) are related to
the initial temperature.

For spherical coordinate, likewise, the surface

temperature and heat flux are also expressed as:

0, = /LK, ,(5) = [1()K, ()= (8,(&) /s +6a,&, /57K, (s)
+(6,(&,)/s+6a,¢, /sz)KL1 (s)+ Fs(ay,a,,a,,s)
(20)

D, = f1()K,,(5) = f2()K,, () = (6, (&) /s +6a,8, /s )K,,(5)
+(6,(&,) /s +6a,é, /sZ)Kl1 (s) +G,(a,,a,,s)

21

where, K, (s), Ki2(s), K51(s), K;a(s) are the kernels
(See the Appendix II) and the functions of F3 (ay, ay, a,,
s) and Gs (a;, ay, s) are related to the initial temperature.

Approximate Inverse Solution for Cylindrical and
Spherical Coordinates

The approximate equations for the surface temperature
and the heat flux are obtained by performing the inverse
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transformation on Eqgs. (18) and (19) for cylindrical
coordinate and Eqgs. (20) and (21) for spherical
coordinate, which are in a similar form of Egs. (14) and
(15). Each coefficient of C; 1, C; 21, D; 12, D 21, W and
Yis listed in Appendices I and II.

When we replace W(a,) and Y(a;) by W.(a,) and Y.(a;)
for cylindrical coordinate and by W(a,) and Y(a,) for
spherical coordinate, respectively, and let a, = 0, then all
coefficients of W.(a,), YAa,), Wia,) and Y(a,) become
0 like rectangular coordinate. It is worth mentioning
finally that the inverse solutions for constant initial and
linear temperature distributions become identical.
Characteristic of Inverse Solution in Cylindrical and
Spherical Coordinates

In case of treating with the temperature change for 0< &
< 1 in cylindrical and spherical coordinates, the
boundary condition at ¢ = 0 always becomes 08/0&= 0.
Therefore, number of measuring point included in Egs.
(18) and (19) and Egs. (20) and (21) is reduced to one.

Consequently, these inverse solutions thereby
become simpler than Egs. (18) and (19) and also Egs.
(20) and (21), but predict worse estimation than those.
The reason is that even though the boundary condition
of 08/0& = 0 is exact, this point is the furthest from the
other surface. Therefore, according to Monde (2000), it
is of significance to choose the measuring point as close
to surface as possible for getting better estimations from
the measured temperature.

As for these problems, how the approximate
solution is influenced by position of temperature
measurement will be discussed later.

Approximate Solution for Semi-Infinite Body

General solution for semi-infinite body is easily
obtained by setting 4 = 0, a; = a, = 0 in Eq. (5), since
there is no initial temperature distribution in it at steady
state. The finite and semi-infinite plates are different in
number of unknown variables, the former has one and
the latter has two. Therefore, one measuring point is
enough for semi-infinite plate. Now, when the
temperature distribution is given by, for example, Eq.
(12) at &= &, one can determine the representative
function of unknown constant B. The equations for
surface temperature and heat flux can be given as
follows:

— *+ioo * N E+

,(1)= L‘[‘ el Zbk 1 /52" s (22)
277 Je-ieo A

_ 1 etio gt N Eay 23

(pw('[) :E‘L_me (T-7 )pepél;b/c,l/s 2 s ( )

We first expand the integrand ¢?% in a series around
s = 0,
transformation to give the surface temperature and heat

and then we perform inverse Laplace
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flux as:

6, (1) = in(T—T,*)”Z/I'(éH) (24)

@, (1) = in(r —Tf)m/l'(%+1) (25)

Semi-infinite body can be also assumed in
cylindrical and spherical coordinates, but we did not
consider this case, since it is seldom used in engineering
field.

PROCEDURE TO DETERMINE COEFFICIENTS
IN EQ. (12)

The coefficient, by ,, in Eq. (12) can be determined from
the measured temperature, for example, by the least
mean square method. Then the coefficients are greatly
subject to significant digit of the data or precision of
measured values, what level of data's accuracy is used is
important.  Generally  speaking, the measured
temperature includes some uncertainty. Therefore, the
simulated measuring temperature calculated from the
exact solution can be expressed as:

6(8,.1)=6,,,,,1)(1+0.005¢) @n=1,2 (26)

exact

where, O (&,,T) is the exact solution for the
corresponding boundary condition, and m and O are
average and standard deviation for a random value of
.respectively. It should be noted to remember that
accuracy in a temperature measured by using
thermocouple would be generally expected to be a
significant digit of 2 or 3.

There is another method except for Eq. (26), which
is cut-off to the second decimal place, but it is
commonly way to employ Eq. (26) in which a certain
disturbance is superposed on the exact solution. It was
reported (Monde, 2000) the solution obtained by Eq.
(26) is worse approximation than by cut-off method.

Figure 2 shows the temperature response measured
at a point and the approximate curves given by Eq. (12)
with a different value of N. From Fig. 2, the
approximated solution is improved with an increase in N,
but it would be saturated around N = 5 ~ 7 beyond
which the improvement is not expected greatly.
Therefore, the order of approximate equation can be
considered to be N = 7 at most.
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Fig. 2 Approximate curve for temperature change at
a point

INVERSE SOLUTION AND REPRESENTATIVE
PROBLEMS

Method for Calculation

The procedure to solve inverse problems is:

1. Determine each coefficient of by, in Eq. (12)
obtained from the temperature at the point of &; or
&, by the least mean square method.

2. Expand the kernels of solution obtained by
performing Laplace transformation around s = 0 in
a series in which the coefficients are summarized in
Appendix II.

3. Calculate coefficients given by multiplying
coefficients in Eq. (12) and the coefficients of the
kernel, which are summarized in Appendix II.

4. Perform inverse Laplace transformation, and
calculate explicitly the surface temperature and heat
flux using Egs. (14) and (15), (18) and (19), (20)
and (21).

Representative Problems

The approximating solutions for several boundary
conditions are reported by Monde (2000), Monde et al.
(2000). We here, investigate about five representative
combinations of initial temperature distributions and
boundary conditions as listed in Table 1, which were not
included in the papers of Monde (2000), and Monde et
al. (2000).

Inverse Solution Calculated

Figures 3 (a) to (d) show comparisons between the exact
solution of surface temperatures and the corresponding
estimated solutions for the cases 1, 2, 4 and 5. Figures 4
(a) and (b) show comparisons between the exact
solutions of heat flux and corresponding estimated ones.
The value of N in Figs. 3 (a) to (d) and Figs. 4 (a) to (b)
means the order of approximate equation and the values
of & and & corresponding to the position of the
measuring point in the solid. And, the temperatures at
each measuring point were obtained by Eq. (26).
Figures 3 and 4 show that the estimated solutions
approach to the exact solution with increase in the value
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Fig. 4 Estimated surface heat flux for (a) Case 3 and
(b) Case 5

EVALUATION OF ESTIMATED VALUE

Minimum Predictive Time

It is mathematically proved (Alifanov, 1994 and Beck,
1985) that no inverse solution exists at T= 0 and the
solution can converge beyond a limiting time. Therefore,
a minimum predictive time is an important factor in
evaluating the inverse solution. One may adopt the
minimum predictive time, T; at which inverse solution
first satisfies within a relative difference of 0.01 (error is
less than 1 %) between the exact and the estimated
values and from which the solution is validated. Table 2
shows the minimum predictive time for every cases
against the value of V. It is found from Table 2 that the
minimum predictive time is hardly influenced except for
cases 3 and 4 by the value of N. However, in the cases 3
and 4, the value of N larger than 5 does not almost
influence the minimum predictive time.

Table 2 Minimum initial time (7;) estimated for
error of 0.01 for & = 0.05, & = 0.10 (initial
condition; 8=10)

N casel case2 case3 case4 cases
3  0.0050 0.0057 0.0233 0.0093 0.0050
4 0.0050 0.0057 0.0317 0.0067 0.0050
5 0.0050 0.0056 0.0189 0.0074 0.0050
6 0.0050 0.0047 0.0093 0.0051 0.0050
7 0.0050 0.0076 0.0059 0.0050 0.0050
8 0.0051 0.0057 0.0056 0.0050 0.0051

Table 3 Standard deviation (o) (initial condition; 8=0)

N casel case2 case3 case4 cases
3 0.0029 0.0091 0.0050 0.0056 0.0030
4 0.0030 0.0093 0.0020 0.0016 0.0032
5 0.0031 0.0093 0.0018 0.0012 0.0024
6 0.0029 0.0093 0.0008 0.0007 0.0029
7 0.0026 0.0094 0.0005 0.0002 0.0025
8 0.0022 0.0094 0.0005 0.0002 0.0013
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Accuracy of Estimation
In order to evaluate the accuracy of the inverse solution,
we introduce standard deviation as:

N = . X
g= \/(Tz _TI)J;‘ (emgruu (1) Hmml(r)) dr

where T, is defined as 90 % of the end time of the
measurement since its time was chosen to avoid an
effect of the end time on the estimated temperature.
Table 3 shows that the minimum standard deviation of &
= (.003 appears at N = 6 beyond which the accuracy of
prediction is not expected to improve any more. Taking
into account the fact that the deviation in prediction
reaches the same level as deviation of approximate
equation, we cannot expect more accuracy in this
method. In addition, it is found from Table 3 that the
approximate equation at the order of N = 6 gives the
most accurate solution.

Estimated Solution of Surface Heat Flux

It is concluded from Figs. 4 (a) and (b) that the inverse
solutions for the surface heat flux obtained by using N =
5to 7 in Eq. (15) also agree well with the exact ones.

Effect of Position of Temperature Measurement on
Estimated Solution

Figure 5 shows an effect of the position of the
temperature measurement on the inverse solution for the
case 3 when using N = 5. The position of & = 0.5 in Fig.
5 corresponds to the farthest point from the surface in a
finite body.

According to Fig. 5, the inverse solution for & =
0.05 and 0.1 are in good agreement with the exact value,
although for a &= 0.2 and 0.3, both the solutions and
the time are not recommended because of a large
deviation and delayed time.

On the other hands, the accuracy of prediction on
these conditions is still the same as that for &= 0.05 and

» = 0.1 as shown in Fig. 3 (a) and Table 2, but the
minimum predictive time becomes larger than that
for&,=0.05and & =0.1.

Consequently, it may be recommended to choose the
measuring points as close to the surface as possible to
give a good estimation. In particular, the point & is
recommended to be & <0.1. On the other hand, we may
recommend &; < 0.2 for the minimum prediction time.
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Fig. 5 Effect of measuring point on accuracy of
solution (Case 3, Heat flux)

Order of approximate equation of Eq. (12)
It is found from Tables 2 and 3 that it is not expected
any more even if increasing N to improve the accuracy

of prediction and to reduce the minimum predictive time.

Consequently, either value of N = 5 or 6 is

recommended as the critical value.

Effect of Temperature Change on Estimation

The approximate equation for the surface temperature
that its first derivative with respect to time becomes
discontinues gives worse estimate than that for the
surface temperature that its derivative is continues (See
Monde, 2000 and Monde et al., 2000). In other words,
for a smooth surface temperature change, the high
accurate estimation can be reached.

TWO-DIMENSIONAL INVERSE HEAT
CONDUCTION PROBLEM

For an isotropy rectangular system, two- dimensional

heat conduction equation can be written in a
non-dimensional form as:
99 _0°0 L(?i@ 0<&<l, 0<n<l 27

R E on’

General Solution for Two-dimensional Unsteady
Heat Conduction

Assuming a uniform initial temperature (6= 0) and
applying Laplace transform to Eq. (27), we can easily
reform Eq.(27) into Eq.(28) in a subsidiary form as:
a;z) i p ane G0 (28)

A general subsidiary solution becomes:

é(f,r],s) ={Acos(mf) + Bsin(m{}
{Ccos(nn/ L)+ Dsin(nn/L}

(29)

where m and n are undetermined constants and possess
a relation confined by m* + n? = -s. The constants of 4,
B, C and D are integral constants subjected to surface
condition. The four unknown constants here need four
individual boundary conditions for four surfaces to
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close the equation. To simplify the question, we here
consider two simplest cases only.

Insulation on Three Surfaces
As one of the simplest boundary conditions, three
surfaces are insulated as given by the following
equations and only one surface is left unknown, which
corresponds to the IHTP solution.

00

aF 0, =0,
(30-a)

00
on
(30-b)

=0,n =1

A general solution that satisfies Eq. (30) becomes as:

_ - n, O
6(&,n,s)= Z)Bj cos(m»,f)cos%%(l—r])% G

where m; (= jm) is eigenvalue to satisfy Eq. (30-a) and
cos(m;é) is the corresponding eigenfunction. The
unknown constant B;is going to be determined by using
the temperature distribution measured on one plane 1 =
n, inside the solid.

Insulations on Two Surfaces

If we assume that the surfaces at £ =0, 1 are insulated
and that the boundary conditions on surfaces n= 0, 1
are unknown, that is, the known surface conditions:

]

—=0,é= 0,]

0& ¢
(32)

then general solution of Eq.(29) turns to:

é(f,r],s) = 2cos(mb/.f){Aj sin(nn /L) + B, cos(nn/ L)} (33)

where m; (= jm) and cos (m;€) are still the same
eigenvalue and eigenfunction, respectively, since the
same boundary conditions on & = 0, 1 are set for Eq.
(29) to be satisfied. The two unknown constants 4; and
Bj are going to be determined by the measured
temperatures on two different planes (n = n,, n =1, 2,
N1 < ny) inside the solid.

Approximate Equation Depicting Temperature
Variation on A Plane of n=n, (n =1, 2) Inside The
Solid
Temperature variations with time along coordinate & on
a plane of = n, (n =1, 2) may be approximated from
Eq. (34), in which the temperature variation with time is
expressed by a half polynomial series.
En,D=e@F ot nm2 GY
There are two reasons allowing us to adopt the form
of half polynomial series of time here: (1) the general
solution of heat conduction possesses the item of root of
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time; (2) one dimensional IHTP, which used the form of
half polynomial series of time in temperature
approximation, has achieved great success. In Eq. (34),
a time lag, T,* is determined by erfc(n, /2\/T,,*) =
min(6), where min(6) is a minimum readable division of
temperature-measuring instrument.

Expanding g(&) in Fourier series by using
eigenfunction, cos(m;§), we can get the following
equation:

1En,0= € eostm ) > i OF

As the most natural thought, one may expect the
coefficients in Eq. (35), i.e.,, Cj and by, being solved
separately by using, for example, the least mean square
method. Unfortunately, the determined approximation
function turns to be two-dimensional regression planes
of & and T and separate determination of C; and by is
impossible. To solve the problem, here we introduce
coefficient Dj to substitute Cj and by. Eq. (35) then is
reformed to:

f@&n,0 = jZ’COS( m 5); r(k/2+1)(T

Applying Eq. (36) to the temperatures measured at the
points on = n, (n =1, 2), we can have the coefficient
D;  determined. Then  performing  Laplace
transformation to Eq. (36), we can get in a subsidiary
form as:

-1, *)’f 2 (3 6)

1,2

p— d N =
@)= ™S costmd)y D s B
=0 £=0

(37)

Characteristics of Approximation Equation

Equation (36), which is used to approximate the
temperatures measured on the plane of n= n,, is
determined by using Fourier series composed of
eigenfunction of cos(jTié). As a characteristic of Fourier
series, the increase of the employed -eigenvalue
generally improves its approximation. As a result, a
requirement of a higher order of eigenvalue leads to an
increase of the measuring points, which may allow us to
encounter another difficulty in actual measurement and
a complicate procedure in determining the coefficients
of D(")j,k. In addition to these, from the viewpoint of
measurement with a thermocouple, the measured
temperature always includes some uncertainty, for
example, uncertainties of a level from 0.1 to 1 %.
Therefore, the number of eigenvalue, N, would be
restricted to a limited value, which will be discussed
later.

Apart from the number of eigenvalue N, it is

necessary to discuss the number of terms related to time.
Monde (2000) recently reported that for the case of
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one-dimensional IHTP, the number of N, which is order
of half polynomial series of time used in approximating
temperature change, is recommended to range from 5 to
8, beyond which no improvement is expected.

Calculation of Surface Temperature

Applying Eq. (31) or Eq. 33)to n=n, (n=1or 2) and
setting them equal to Eq. (37), we can have the
coefficients of Bj in Eq. (31) or 4; and B; in Eq. (33)
determined, depending on the number of the unknown
surface. After some manipulations, we can finally
express the solution for the temperature change in the
solid (including surfaces) in subsidiary forms as:

for boundary condition that three surfaces are insulated

N, cos(m, 5)0051*(1 m} ~ ) (38)
fn=cs S opy

for boundary condition that two opposite surfaces are
insulated

COS{Z(I—'L)}

o Ny Dl
) o /ZOZ s Gin{(n/L)n, -m}
6(&.n.s5)= sin{(n/L)(n, =1, }

N, N (2)

e ZZ (& zm Gin{(n/L) (0, =}
sin{(n/L)(n, -, }

cos(m ;&)

cos(m;€)
(39)

Substitution of n = i\/(s+mj2) into cos(n/L) and
sin{n/L(N,-n)} reforms them into cosh{\/(s+mj2)/L }
and i sinh{\/(s-i-mjz)/L}, respectively. Taking account
into these relations and setting 17 = 0 in Eq. (39), we can
obtain the surface temperature as:

for boundary condition that three surfaces are insulated

Bu(E.5) = Zjcos(m E)cosh(W/L)Zij/ .
J

5 cosh{(ys +m? /L)(1=n,)}
(40)

for boundary condition that two opposite surfaces are
insulated

_ o v Sinh{(W/L)r]z}cos(m/.\f) N DEII)(
QW(E,S) -e ; sinh{(W/L)(nz _nl)} ;’S(k,ZH)
_ g N, smh{(W/L)r[}cos(m IR D(z
,; smh{(\/bﬁ/L)(n2 ’71)} ; /2+)

(41)

Expanding Hyperbolic functions in Eqgs. (40) and (41) in
series around s = 0 and then performing inverse Laplace
transformation, we can get the surface temperatures for
the two different kinds of boundary condition as:

for boundary condition that three surfaces are insulated
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NN Gil,l cos(m &) ki2 (42)
9 (E T) Zk & F(k/2+1) ( T[)

for boundary condition that two opposite surfaces are
insulated
G cos(m; &) .
) _ _ k/2
W)= ;;,Zir(k/ZH) T-1)) (43)

g g O
;,5:,, F(k/2+1) ?

Detailed procedure to calculate these coefficients in
Egs. (42) and (43) in noted in appendix.

Calculation of Surface Heat Flux

By differentiating Eqs. (38) and (39) with respect to 1,
the heat flux in n direction can be derived and then the
surface heat flux is achieved by setting = 0:

for boundary condition that three surfaces are insulated

_ .Y (yfs +m? /Lysinh(y/s + m? / L)
B (& s)=en Zs J J

= cosh{(W/L)(l -n)}

N
x ZD(/'}( /512D cos(m &)

(44)

for boundary condition that two opposite surfaces are
insulated

@, (&, 5)=e

e (s +mj2; /L) cosh{(,/s +m; /L.)’Iz}
/Zo sinh{(./s + mf /L)(r]2 _’71)}

. b0 (43)
X ZWCOS(’" &)

(\/s+7 /L)cosh{(\/s-I-T /L)n}
Z sm{(W [, -n)

N 2)

ik
x Z ﬁ cos(m &)
E

Just as the same as what we did in deriving the surface
temperature, in achieving the surface heat flux, we also
need to expand Hyperbolic functions in Eqgs. (44) and
(45) in series around s = 0 and perform inverse Laplace
transform. The surface fluxes for the two different kinds
of boundary condition are finally expressed as:

for boundary condition that three surfaces are insulated

5o X HY cos(m;€)

QED=Y Y e T

e (46)
Ll T(k/2+1)

for boundary condition that two opposite surfaces are
insulated

NN H(IZ)COS(W! €) N
@, (&, T)_,ZMZ 2 T-1)) 47)
N, N H(ZI Cos(m/{) _ *)/5/2

_ J.k (
;,5:,. F(k/2+1) ?

Detailed process to derive the coefficient in Egs. (46)
and (47) is found is Appendix III.
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Discussion on  Approximate
Temperature Variation

Using Egs. (40) and (41) and Eqgs. (46) and (47), we can
predict the surface temperature and heat flux explicitly.
However, just as the same as what we discussed in
one-dimensional IHTP (Monde, 2000), when the
Laplace operator s is high enough, Eq. (37) has a
characteristic of becoming divergence. As concerned
with the inverse Laplace transformation, there exists a
minimum time, only after which the inverse solutions
(Egs. (42) and (43) for surface temperature and Eqs.(46)
and (47) for surface heat flux) become applicable. In
another word, it is possible for the inverse solution near
s = 0 to predict the surface temperature and heat flux
after the minimum time T,;,.

Equation for

SIMPLE EXAMPLES FOR VERIFICATION OF
THE PRESENT METHOD

In order to verify the applicability of Egs. (42) and
(43) and Egs. (46) and (47), we need the temperatures
measured on a plane of n = ), (n = 1, 2). Here, the
temperatures calculated from a direct solution, which is
derived for a given boundary condition mentioned
below, are used as the measured temperatures. If the
boundary conditions are that the surfaces on £ =0, 1 or
even on ] = 1 are insulated as given by Eq. (32) or Eq.
(30) and the left surface of n = 0 is given by either Eq.
(48-a) or (48-b), which will correspond to the THTP
solution,

(6) 0=1,0<6<05,0=0,05<8<1.0,n=0 (48-a)
(7) ®=1,0<&<0.5, ®=0,05<E<1.0,n=0

(48-b)

then, direct solutions for the surface condition of cases
(6) and (7) on n = 0 can be obtained, respectively.

The exact value of the temperatures on any plane of
n=n, (n =1, 2) are easily calculated from the direct
solution. As actual temperatures measured on N = 1,
always include some uncertainty, we may superpose
normal random error on the exact value of the
temperature as given by the following equation similar
to the one-dimensional case:

6(&.n,.1)=6..,.,(&.n,. 1)1 +0.5007" £) (49)

and then we determine the coefficients of D(")j,k in Eq.
(36) using the temperature given by Eq. (49) in which
Nyr is the order of significant figure and & is normal
random error having average value of m = 0 and
standard deviation of 0 = 1.

Figure 6 shows the variation of temperatures on 1] =

0.01 calculated from Eq. (49), for example, for the
boundary condition (case 6) given by Eq. (48-b). These
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temperatures on 1 = 0.01 are used to determine the
coefficients of D(n)j,k in Eq. (36). Figure 7 shows the
temperatures approximated by Eq. (36), in which the
determined coefficients of D™;), is used.

NUMERICAL CALCULATION RESULTS AND
DISCUSSIONS

Figures 8 and 9 show the surface temperature
estimated by Eq. (43) and the surface heat flux
estimated by Eq. (47) for the case (7). Figure 10 shows
the surface temperature estimated by Eq. (42) for the
case (6). The temperatures used in the calculations are
on two planes of ; = 0.01 and n, = 0.05 and the
measuring points on each plane are set at 30. In addition,
orders of N; and N in Eq. (36) are set at 30 and 5,
respectively. The order of significant figures is set at Ny
= 3, which can be considered an enough error level that
is included in a measurement of temperature with a
thermocouple.

Figure 11 shows the surface heat flux for the case
(7) estimated by Eq. (46) by using the temperatures only
on one plane of 17; = 0.01. The orders of N;, N and Ny
are kept as the same as that used in the previous
calculation, that is, N; = 30, N =5 and Ny = 3.

It may be necessary to mention that for the case (6),
the temperature on the surface possesses a discontinuity
point at £ = 0.5 so that the surface heat flux obtained by
differentiating the temperature with respect to 1 does
not converge uniformly at &= 0.5. Consequently, the
predicted surface heat flux at = 0.5 is, of course,
divergent. Under such circumstance, as shown in Fig. 10,
only the prediction to the surface temperature is possible
from the inverse solution.

Finally, it may be worth mentioning that although
the surface temperature for the case (7) predicted from
Eq. (42), which is not illustrated here, is a little inferior
to that predicted from Eq. (43), it is much better than the
predicted surface heat flux as shown in Fig. 11.

It is concluded from a comparison of Figs. 9, 10,
and 11 that the inverse solutions obtained from two
measuring planes can estimate the surface temperature
as well as the surface heat flux at much higher accuracy
than those obtained from only one measuring plane.
How the relative positions of the two planes (n = n,)
affect on the predictive accuracy would be expected as
one of the future researches.

Discussion to the Prediction Result

Figure 9 shows that the surface temperature estimated
by Eq. (47) approaches to the given surface temperature
and agrees it with an error of a few percent after a time
whose Fourier number becomes 0.02. As for the surface
temperature estimated by Eq. (43), it is found from Fig.
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10 that the whole surface
0.50¢

0.40

Fig. 6 Temperature change in a solid at 7, = 0.01
calculated from Eq. (49) for the case (7)

1 9569,05 0%
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Fig. 7 Temperature approximated by using Eq. (36)
at N, = 0.01 for the case (7)

Fig. 8 Surface temperature estimated by Eq. (43) for
the case (7)
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Fig. 9 Surface heat flux estimated by Eq. (47) for the
case (7)
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Fig. 10 Surface temperature estimated by Eq. (43)
for the case (6)
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Fig. 11 Surface heat flux estimated by Eq. (46) for
the case (7)
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temperatures are well predicted inside an error band of
1%, although the estimated surface temperature seems
slightly deviating from the given temperature near the
discontinuity point of &= 0.5. Whereas for the case (7),
because there exists no discontinuity of the temperature
at any point on the surface as what we may have already
observed from Fig. 8, the inverse solution, Eq. (43),
predicts the surface temperature very well within an
error band of 1%. However, the existence of the
discontinuity point for the surface heat flux at é= 0.5
makes accuracy of its prediction degrade obviously and
the estimated values present an error near to 10%
around &= 0.5, as shown in Fig. 9. The whole
prediction, however, despite of the existence of the
discontinuity point, is still found of satisfactory
accuracy.

To the cases (6) and (7) listed above, the inverse
solutions of Eqgs. (43) and (47) are found being capable
of predicting the surface temperature and heat flux in an
error band from 3 to 5%. As a general, from doing
comparison to Figs. 9 and 10, we can find that the
prediction to the surface temperature is better than that
to the surface heat flux. The reason is analyzed due to
the temperature disturbance included in Eq. (49) being
enlarged in the calculation of the heat flux, where the
temperature difference is needed between the measuring
points.

Influence of Discontinuity Point

As shown in Figs. 9 and 10, a degradation of prediction
accuracy is observed near the discontinuity point. The
reason is attributed to the employment of the Fourier
series in the temperature approximation Eq. (36). In
other words, the Gibbs phenomenon, which is a
characteristic phenomenon in the Fourier series, is
aroused near the discontinuity point of é= 0.5. From
engineering point of view, a problem of discontinuity
generally doesn’t
condition always possesses no discontinuity point. In
another word, for actual engineering condition that
possesses no discontinuity point on boundary, the
proposed IHTP solution can be anticipated for high

exist because wusual boundary

prediction accuracy.

Influence of Degree of Eigenvalue Employed in Eq.
(36)

The improvement of the temperature approximation
accuracy in Eq. (36) is considered being the most
important and effective way to improve the accuracy of
the whole IHTP
consideration, the increase of the number of eigenvalue

solution. As a most natural
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N; may lead to the improvement of temperature
approximation
improvement of the accuracy of the whole IHTP
solution. To check a possible influence of the number of
eigenvalue N, we increase the number to 40. However,
no obvious improvement of the accuracy that is
expected accordingly is observed. The reason is
attributed to the uncertainties included in the measured
temperatures, from which the coefficients in Egs. (36)
and (37) are determined. In another word, accuracy
improvement from the increasing of the number of
eigenvalue may be counteracted by the uncertainties
included in the measured temperatures. Therefore, in
spite of any increase in the number of eigenvalue, the
approximation improved
significantly. The influence of N, on the accuracy

accuracy and consequently the

accuracy cannot be

2, -\

Fig. 12 Surface heat flux estimated by Eq. (47)

for the case (7) with an error of Ny =2

1.2
1.0
0.8
0.6
0.4
0.2

2, )

Fig. 13 Surface heat flux estimated for the case
(7) without error by Eq. (47)

therefore associates to the error included in the
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measured data greatly. In the future, the accuracy
improvement due to the increase of N; needs to be
examined by concerning the accuracy of the measured
temperature.
Influence of the Temperature Measurement
Accuracy

To check the influence of the accuracy of the measured
temperature over prediction result, we set the order of
significant figure Ny in Eq. (49) at 2, 3 and o°
(error-free). Corresponding results are shown in Figs. 12
and 13, respectively.

When Ng is 2, as shown in Fig. 10, the prediction
result is much poor than that when Ny is set at 3. The
predicting error is about 20%. And the IHTP solution
calculated from error-free temperature, as shown in Fig.
13, still possesses an error about 4%, which is almost as
the same as that calculated from N = 3. The influencing
tendency tells us an importance of the measured data at
high accuracy. In actual measurement, although the
temperature  definitely
uncertainty, an effort of employing high precision

measured includes some
instrument may lead directly to an improvement of

predicting accuracy for the IHTP solution.

CONCLUSIONS

By using the Laplace transformation technique, we

achieved two-dimensional IHTP solutions and

following results:

1. Surface temperature can be predicted well over the
whole surface within an error of a few percent, if it
changes continuously.

2. The minimum predictive time for the proposed
IHTP solution is 7= 0.02.

3. In order to predict the surface temperature and heat
flux from the proposed THTP solution successfully,
a high precision instrument that can ensure
measured temperature at uncertainty level less than
0.1 %, namely N = 3 at least, is recommended.
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NOMENCLATURE

Ain :coefficient

a ‘thermal diffusivity [m?/s]

ag, a1, d,  .coefficient of  initial temperature
distribution

B :coefficient

by :coefficient

D :coefficient  derived from  measured
temperature variation

f1(1), fo(t) :function of non-dimensional temperature at
apoint of &, &

(&, n, 7) :function for approximating temperatures
on plane n = n, inside a solid

L :aspect ratio (=L,/L,)

Ly :length of a solid in x direction

Ly :length of a solid in y direction

m :average for a value of €

min(6) :minimum of significant number or
minimum division of measuring equipment

m; :eigenvalue (m;= j)

:degree of approximate polynomial with
time
[ :degree of eigenvalue

Nyt :order of significant figure

n :constant (= jv's +m? )

p =s

q :heat flux [W/m’]

9o ‘heat generated per volume unit [W/m’]

R :characteristic length on the cylindrical and
spherical coordinate [m]

N :Laplace operator (= p* or= - (m*+ n*))

T temperature [K]

Ty :characteristic temperature  [K]

t ‘time [s]

X,y :x and y coordinates, respectively

[m]

W, W. W, :influence functions of initial temperature
for rectangular, cylindrical and spherical
coordinate

Y, Y, Y, cinfluence functions of initial temperature
for rectangular, cylindrical and spherical
coordinate

£ :random error varying from —1 to 1

@ :non-dimensional heat flux

@ :subsidiary value of @
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Mn) :gamma function

6 :Non-dimensional temperature

0 :subsidiary value of 8

6, :initial temperature (distribution)
T :non-dimensional time

(Fourier number = at/L*, at/R* or at/L’)

T :minimum predictive time
T :non-dimensional time lag
( erfe(é, /2\/?) = min(9))
é :non-dimensional length
(=x/L,v/ R, & < &yor x/Ly)
n :non-dimensional distance in y direction
(=y/Ly), m<n)
o :standard deviation
Subscript
1,2 : Measuring temperature
c : Cylindrical coordinate
r : Rectangular coordinate
S : Spherical coordinate
w : Surface
Appendix I

Functions for initial temperature distributions

a 2a
— 0 2
F(ay,a,,s)=—+—=
s s

a

G(a,s)=——
K
a,  a,  4a
Fy(ay,a,,5) == +—2+—2
s s s
a, 2a
Gz(alﬁabs):_il_ 2
K K
_4 a4,  6a,
Fi(ay,a,,a,,s)=—+—+—=+—=
K K K K
a, 2a
G3(a,,a2,s) =—1-=2

s s

W, ==2a,(c,, —¢;,)~ az(cmg‘,2 - Co_lfzz)

Y, ==2a,(d,, ~d,,) ~a,(dy & ~d, &%)
W.=-4a,(c,, —¢c,)~a, (Co.zfl2 _CO.IEZZ) ta,

Y, =—4a,(d,, —d,,) - a,(d, & —d, &)~ 2a,

W, =—=6a,(c,,¢ —¢,,&,)~a, (00,2513 - 00.1523) ta,
Y, =~6a,(d,,& ~d,&,)~a, (doyzcﬂ3 - dO,IEZS) —2a,

Appendix II.

Expansion equation for one-dimensional IHTP

The subsidiary form obtained after executing the
Laplace transformation function can be abbreviated into
B . The inverse Laplace transformation of this

subsidiary function becomes as:
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0(r)=— e B(s)ds
Zm jc—ico

In the present analysis, we first expand the functions
K(s) around s = 0 in a series, and then obtained the
solution by executing complex integration. The
subsidiary functions of the surface temperature and heat

flux expressed the kernel K(s).

(a) Finite body
Surface temperature:

7 :4/7{(5)1(142(5) - .J;‘Z(S)Kl,l ()= (e(](él)/s + AI /SZ)Kl,z(S)
+(6,(&) /s + AZ/SZ)KI,I(S) +F(s)

Surface heat flux:

D = f1(9)K,,(5) = (K, (5) = (6,(&)/ s + 4 /57)K, ,(5)
+(0,(&))/ s+ 4y /5K, () + G(s)

where, A1=A4,= 2a, corresponds to rectangular, 4,=A4,=
4a, to cylindrical one, 4,= 6a,¢&,, A,= 6a,¢, to spherical
one

(b) Semi-infinite body

Surface Temperature: § = 7. (5)K,(s)

Surface heat flux @ & = 7. (s)K,(s)

where, functions of F' (s) and G (s) are related to initial
temperature distribution (See appendix I).

(1) Expansion equation for finite body
Expansions of the kernel K ,(s), Kz4(s) (n=1, 2) around
s =0 1n a series for several coordinates are given as:

)

KL“ (s)= Z,cmsj n=1,2
j:

K, ,(s)=>)d .vns" n=12

The coefficients c;, and d;,, can be given as:
1 <

Cin = g ; X0 n=12

n=1,2

where, the coefficients x; , and y;, are defined in Table
Al (a) to (c), and function #; is also defined by the
following equations, where g;is shown in Table Al.

hy =1
h =-g
h, =g, +g|2

hy=-g,+2g,8,~ g,

2 2 4
ht=-g++(2g1g> +g2 ) -3¢ g2 +g!
2 2 3 5

7. - A L. - N Ar N A .
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We can express the surface temperature g (s)and
heat flux @ (5) using these coefficients in a subsidiary
form as

- —vrl _ s
0, g By et S S
N N
‘”n z /12 _ —vrz Z C/Zl
2+1 2+1
J! IS/

where

Nk
Copm :sz,ﬁlv,cm,,,, Nk=In{(N-1)/3} I,m=1,20r2,1
=0

Nk

Ciim = ;bm Coms T2ZONk=Int{(N=/)/F Lm=120r2,1

N
fn Z D/'ll
1241

S/

=

N
— ,”l J'Z _
- Z J12+1
where

Nk
D, = ;bm,dm, Nk=Int{(N-1)/2} I,m=1,20r2,1

Nk
D, = szwy,dhm, J2O0,Nk=Tnt{(N - j)/3 I,m=1,20r2,1

The coefficients C;, and D;; are the same coefficient of
Egs. (14) and (15).

(2) Expansion equation for the case of semi-infinite
body

Expansions of the kernel K| (s), K, (s) around s =0 in a
series are given as:

K(s)=Sus"

1=(

K,(s)= gvisi

where, u; and v; are given in Table A2
We can express the surface temperature g (s)and

heat flux @ (5) using these coefficients in a subsidiary

form as:

N
—sr,
Z 1/Z+l

N
—srl
z

where

Nk
a = Z’bk.lulml? Nk =N

Nk
Uu,= Z’ble,luk ]
=

j20,Nk=N~-j

N N N
D == bi,l Jo— -ty V/
w — € w Q VST T€ /241
&' & &is
where
Nk
V- = Nk =N

bkvk,
z

Vi = o bkeistivi, J=20,Nk=N-j-1
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The coefficients U; and V;
Egs. (24) and (25).

; are the same coefficients of

Appendix ITI
Expansion equation for two-dimensional IHTP

(a) For the condition that insulations are done on three
surfaces

Surface Temperature:

_ N
0= Zfl(S)KU(S)
Surface heat flux

:5=Zﬂ@mmm

(b) For the condition that insulations are done on two
opposite surfaces

Surface Temperature:
§=§R@mmm Ok}
Surface heat flux:

o= Zﬁ@mmmAmmm<d

In spite of coordinate systems, kernels of K"(s) and
KD(s) (I =1, 2) expanded in a series around s = 0 are

always written in a common form as:

Kjw=cofs el 1702

K{"(s) = Co{) Zd") g

The coefficients ¢, ; and d,, ;are written as:

, 1 n a

) — )

Cpy = — z X h,
g() i=

1 n
Z y}.[/?hn—i

1=12

) —
d,; =—
go =0

=12

where £; is calculated from following listed equations.
The calculation to the employed item g;j and coefficients
X;, y;j are listed in Table A3.

hy=1

h=-

h=-g+g’

h=-g,+288 - &’

2 2 4

hy==g, +2g1g3+2 )38 &+ &
2 2 3 5
hs ==gs +2(g184 + 228:) =32 &+ 218 ) T4g8 g~ &
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With rearrangement, g, (s)and@ (s)are derived as:

(1) For the condition that insulations are done

three surfaces

@ & D% cos(m, ),

,(s)=e™" Z g

o N (1)

=e™" Z} (k/2+l cos(m <)
=0 =

© N D“) cos(m; E)

O
0 &
Lo N (1)
=T z

=0 k==15

Nk
@ — (O] [¢)] —
G/'rl - Z Dj,Z/m E/'_kﬂ > l=

Nk
[ (1) 1)
Gj,l - Z’Dmku Ej,k
=

g k724D

e

cos(m ;&)

(/c/2+l

o _< )
o= ZD,/,ZI{H F/ k+l >
=0
0 _ < W
Hj,l = ;,D/',Zkﬂ F/',/c >

where Gj, and
respectively.

ZC

ZC
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on

[0} (l) n
1;CnjS

O] d(l

2,j%n. ;8

-1, Nk =Int{(N -1)/3
0<I<N,Nk=Int{(N-1)/2}
I=-1,Nk=Int{(N -1)/3
0</<N,Nk=Int{(N —1)/2}

H; are coefficients of Eqs.(42) and (46),

(2) For the condition that insulations are done on two

opposite surfaces

where Gj, and H,
respectively.

> ¥ DY cos(m, 4,
Z ; RCERY

= X D) cos(m, 4,

@) @) gn
Z‘Co1 Jenlls
Jk
Z; S

ZC (l) (1) n
o N (12) o N (21)

15
o Z Z (k/2+l) cos(m ;&) - e Z Z (k/2+l) cos(m ;&)

e X D% cos(m, ),

‘17%(5):6’”' Z .

6,(s)=

z CoPd® g

(/c 2+1) 2 Jn,j
n=0

o (2)
N D3 cos(m; E) Col gV
Z}Z} (k/2+1) Z, 02/ M
= =
w N (1 2) w N (21>

Z (k/2+l) cos(m )

k=

- e—.sr,‘ Z,
770 k==

Wcos(m &) —e™ Z
(

Nk
G,.""= Z;Df.zkﬂmEj./mma 1=-1,Nk =Inf{(N - 1)/2}
=

Nk
G, " = Z D, "E,?,  0<I<N,Nk=Int{(N-1)/23
k=0

Nk
H, =Y D 1=l = IV -1/

Nk
H," = Z D, "F,”, 0<I<SN,Nk=Int{(N-1)/3}

;1 are coefficients of Eqs.(43) and (47),

Table Al(a) Kernel K(s) in rectangular coordinate, these coefficients in its series and common terms used in its series

Temperature (K; ,(s)) Heat flux (K (s))
Kernel K(s) snh{p(E, ~.} sinh{p(&, -&}
Coefficients x; , X =L g =1 g
Vin o i) Yo T i)y
; 2
Common item, g, =& -&> g[:(fz._{l) (i=1)
g (i +1)

Table A1(b) Kernel K(s) in cylindrical coordinate, these coefficients in its series and common terms used in its series

Temperature (K ,(s)) Heat flux (K3 4(s))
Kernel K(s) ! ZIZ(EE S)S ) Z;f(n s)s )

Coefficients x; ,
*2
yi,n

v = Z{_ln(gn Yasb:, ()

Ve

+d;(E,)a; ¢

bz (&)}

Vin = Z{ In(¢,)e;br; (E,)

J

*d; (e = f7b, (G))

. *
Common item, g; 2

g, =In, /&) g = Z %, (€bi; (&) +

4(EN €)= 0L EE (i21)
In€, /,) 5
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*1: Zy, Z, and Zy, are given as:
Z,(€,,5) =In(1/E ), (p),(pE,) + X (pE, ), (p) = X(p),(pé,)
Z,(€,.5) =In(1/E N (D), (pE,) + X (P& (p) ~{X'(P) = 1, (P} 1, (PE,)

Z,(s)=In(&, /&)1, (P&, (p&,) + X(p&,),(pé,) — X(p& ), (pE,)

where

where, I, and I; are modified Bessel functions of the first kind.
*2: The coefficients of @, through £ are summarized as:
1 1

) . o _ o/ 1
a;:W, b,(f”)zm(fn)z/’ Cj—ajm:;

GEI=HE)Y 0 G =D £ =0y o

m=|

b

3|~

m

Table Al(c) Kernel K(s) in spherical coordinate, these coefficients in its series and common terms used in its series

Temperature (K 4(s))

Heat flux  (K;,(s))

sinh{p(&, -1}

pcosh{p(fn —1} +sinl{ P&, —1})

Kernel K(s) sinh{p(e, —& ) sinh{p(&, - &}
fficient
- e % = o (€, - 1) Vi =y & )+, =1
ins in (21+1) n in (21)‘ n (2l+1)7 n
yi,n

Common item , g; 8 =674 g =

(Ez _51)21' (i=1)
(i +1)

Table A2 Kernel K(s) and its coefficients in its series

Temperature (K;(s))

Heat flux (K(s))

Kernel K(s) e’

pe"é'

&
u, =——

Coefficients, u;_, v; "
A

_é&
v, =

il
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Table A3 Kernel K(s) and its coefficients

(1) For the condition that insulations are done on three surfaces

Surface temperature (Ky;(s))

Surface heat flux (K, (s))

Common item

cosh{ (s+m.2)l} (S+mj2) . N
Kernel K(s) i sinh{y/(s +m; )Z}
1-n -
cosh{ (s+m/.2) ! cosh /(s +mj2)(1 ’71)}
Coefficients of n
K(s) after X,0 = Lo 00 =0, ymo— BFS (n=z1)
T @mlolO ' -DoLo
m; =0 expansion )
I 1
(j=0) Coefficients Co Co,, =1 Coro =7
. 1 1- ’71 2n
Common item 8no = (2 ),( )
k k+1
Coefficients of Z kzin;Blg mjz(k—n) 2/{]?7_?;' 1 j2(k+1—n)
K(s) afFer = = (2K)'0OL O 1 Yo, =h v, = S ( NOLO 1 (n>1)
expansion cosh(m; Z) m; sinh(m, Z)

1 . 1
m:> 0 cosh(m; —) | sinh(m; —)
(J-J> 0) Coefficients Co; Co, ; = —1—L’h Co, ; :Z—l—r?

cosh{m, (T)} cosh{m;(—-")}
L
1-n 2%, 2(k )
_5 (2k)'( )

nj =

cosh{m, (_Trh)}

(2) For the condition that insulations are done on two opposite surfaces

Surface temperature ( Kl“j) ()

Surface heat flux (K{") (s))

. n +m?
sinh{ (S+m/'2)f[ (s+m, )cosh{ (s+m,-2)i}
Kernel K(s) o L
sinh{y (s +m; ) (2 sinh{ (S+mj2)(%)}
Coefficients of 2041 i n
K(s) after xh = ! ! =0
expansion n+DI0OL O T @a)OL O
m;=0 [ 1
(i=0) Coefficients Co; Cojg = Cosy =
. - 1 1, =120 .
Common item a0 QD) (7L )
e+1
Coefficients of H 12“ mH 4G 1 j2(k—n>
K(s) after x == (2k+1)'DL o 0 - & ZO0L D
n.j n,j
expansion sinh(m, Ul cosh(m, &)
. n n
h(m, — h
m;> 0 ) o sinh(m, L) o m; cosh(m; i
(>0 Coefficients Co; Coy) R Co) = AT
sinh{m (%)} sinh{m; (%)}

Common item

k Cn (u)ﬂ'ﬂ m 2(k=n)+1
_ g, Qk+1! L /

b

n,j

sinh {m, (L;'“) !
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