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Abstract  An analytical method has been developed for the inverse problem in one- and 
two-dimensional heat conduction, when the temperatures are known at an appropriate number of 
the measuring points. On the basis of these known temperatures, a closed form solution is 
determined for the transient temperatures by using Laplace transform technique. This method first 
approximates the temperature data with a half polynomial power series of time. The resultant 
expression for an objective temperature and heat flux are explicitly obtained in the form of power 
series of time. Numerical results for some representative problems show that the surface 
temperature and heat flux can be predicted for not only one- but also two-dimensional heat 
conductions well by the present method. 
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INTRODUCTION 

 
   A procedure to solve inverse heat transfer problem 
(IHTP) is very important in determining unknown 
surface temperature and heat flux from known values in 
the body, which are usually measured as a function of 
space and time. Especially, under the severe surface 
conditions such as reentry of space vehicle and an 
accident involving coolant breaks in the plasma-facing 
components, a direct measurement of the heat flux or 
temperature change on the surface is almost impossible 
so that the prediction of these values cannot help 
depending on the solution of IHTP.  In addition, 
several studies about IHTP have been carried out to 
predict the transient surface conditions during 
quenching a hot body.  Recently, the IHTP has been 
numerically treated and extended to multiple 
dimensions with help of development of computing 
architecture and improvement of computer capacities.  
Several approaches about the IHTP (Alifanov, 1994 and 
Beck, 1985) are summarized. Nevertheless, a theoretical 
method using Laplace transformation has been still 
interesting when the configurations involved are rather 
simple such as rectangular and cylindrical shapes and 
then the known boundary conditions are not 
complicated, since the solution to the IHTP can be 
explicitly derived predicting the surface conditions with 
a simple functional form.  As an example of analytical 
method of one dimensional IHTP, a procedure using an 
exact solution by Buggraf (1964) and a method using 
Duhamel solution and Laplace transformation are 
widely used.  Shoji (1978) pointed out earlier that 

Laplace transformation is promising in treating one 
dimensional IHTP.  Imber (1974) and Imber and Khan 
(1972) extended a procedure using Laplace 
transformation for one dimensional IHTP to one for two 
and three dimensional IHTPs, since it is relatively 
simple to extend two and three dimensional IHTPs for 
the case that the geometrical configurations involved are 
not complicated. As for numerical method, Heieh and 
Su (1980), Bell (1984) and Lithouhi and Beck (1986) 
solved two dimensional IHTP based on finite different 
method, while Shoji and Ono (1988) based on boundary 
element method. Huang and Tsai (1998) carried out an 
analysis to arbitrary boundary problem by using 
conjugate gradient method. Frankel et al. (1997) first 
approximated the temperature change at a point using 
polynomial series of Cheviseff, and then gave the 
solution of IHTP by determining each coefficient of 
polynomial series in order to minimize a weighted 
residual in the governing equation. Recently, Monde 
(2000), Monde et al. (2000) and Arima et al. (2001) 
have succeeded in getting an analytical solution for 
one-dimensional heat conduction using the Laplace 
transformation and shows that the surface temperature 
or the surface heat flux can be predicted accurately and 
easily by using the analytical solution. The reason that 
the Monde method prefers to the Shoji (1978) and 
Imber (1974) ones, is that an approximate function 
employs half polynomial series of time and take into 
account of a time lag, and it is applicable for an initial 
temperature distribution in a solid. It should be 
mentioned finally that Monde and Mitsutake (2001) 
proposed a new method based on success of this 
analytical inverse solution which makes it possible to 
measure thermal diffusivity and thermal conductivity *Email:monde@me.saga-u.ac.jp 
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more accurate and easier than that based on a direct 
solution. 
   More recently, Monde et al. (2001) have applied his 
method to two-dimensional case and derived an inverse 
solution of heat conduction in finite rectangular 
coordinate, showing that a good estimation of the 
surface temperature as well as the surface heat flux were 
obtained. 
 

   The objective of this paper is to review our recent 
study of inverse problem in one- and two-dimensional 
heat conductions.  
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1  
Fig. 1 Sketch illustrating inverse heat conduction 

problem for one measuring point 
 

ANALYSIS OF ONE DIMENSIONAL HEAT 
CONDUCTION 

 
One-dimensional heat conduction equation with 

constant properties and no internal heat generation in a 
solid as shown in Fig.1 can be written in a 
non-dimensional form as: 
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where, κ = 0 corresponds to rectangular coordinate, κ = 
1 to cylindrical one, κ = 2 to spherical one. For an initial 
condition of θ = θ0 (ξ), Laplace transformation of Eq. 
(1) becomes as: 
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It is possible to treat with Eq. (2) for rectangular or 
cylindrical or spherical coordinate depending on  κ = 0, 
1 or 2. However, the case for rectangular coordinate 
namely  κ = 0 only will be discussed here, and the other 
cases will be briefly written due to a limited space. 
 
Initial Temperature Distribution 
The temperature in the solid has been in a steady state 
where ∂θ / ∂τ  = 0, before transient heat conduction will 
start. Therefore, the initial temperature distribution in 
the solid with heat generation of q0 can be generally 
given for three different coordinates by the following 
equation. 
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2
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∂
∂
ξ
θ                                    

(3) 

The initial temperature distribution can be easily 
given by a quadratic function as: 

2
2100 )( ξξξθ aaa ++=                        (4) 

The three constants of a0, a1and a2 are determined from 
a given steady state condition. 

 
General Solution 
The general solution of Eq. (2) with initial temperature 
distribution, )(0 ξθ , can be easily given as: 

2
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where p2 = s, and s is Laplace’s operator and A, B are 
integral constants subject to surface conditions. 
 
Solution for Finite Body 

In the case of IHTP for a finite plane, two known 
temperatures in the plate are necessary at least to close 
Eq.(5). Therefore, let the two temperatures at two 
different points of ξ = ξ1, ξ2 (ξ1 < ξ2) be as: 

2,1),(),( == nsfs nnξθ                         
(6) 

Substitution of Eq. (6) in Eq. (5) gives 
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After determining the constants of A, B in Eq. (7) and 
then substituting the values of A, B into Eq.(5), we can 
obtain the temperature in the body as follows:  
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and the surface temperature can be easily obtained by 
setting ξ = 0 as: 
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Likewise, the solution for the heat flux can be also 
obtained as: 
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where, 
0
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The surface heat flux becomes,  
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where, F1(a0, a2, s) and G1(a1, s) are function of initial 
temperature distributions (see Appendix I) 
 
Approximate Equation for Temperature at a 
Measuring Point 

In order to perform inverse Laplace transformation of 
Eqs. (9) and (11), we first have to give the known 
functions, 1,2),( =nsf n @  included in )(swθ and 

)(sΦw , explicitly. By the way, the subsidiary function of 
fn(τ) can be determined so as to approximate 
temperature changes at two different measuring points 
of ξ = ξ1 and ξ2, respectively. 

  

   Any function fn(τ) is available in approximating the 
temperature change. Therefore, Monde (2000) tried 
some different kinds of functions on which the 
something of IHTP depends and finally recommended 
half polynomial series of time with a time lag as given 
by Eq. (12), since Eq. (12) can give the best estimation 
among them. 
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where, coefficients bk,n can be determined by using, for 
example, the least mean square method from the 
measured temperature and N gives number of terms of 
polynomial series. This time lag τn

* can be determined 
from erfc (ξn/2√τn) = min (θ). The reason why 
polynomial series of time is recommended is that a 
general solution for one dimensional heat conduction is 
provided in functional form of θ  = (ξ/√τ) 

The subsidiary form of Eq. (12) is easily obtained as: 
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   After substituting Eq. (13) into Eqs. (9) and (11), 
one performs inverse Laplace transformation to give the 
surface temperature and heat flux. However, even if one 
performs this inverse transformation exactly, we can 
only know the estimated solution of surface temperature 
and heat flux for τ > τmin, because the solution always 
diverges as τ → 0. Therefore, in order to follow another 
way rather than direct inverse Laplace transformation of 
Eqs. (9) and (11) , we first expand hyperbolic functions 
in Eqs. (9) and (11) in a series around s = 0, and then 
perform inverse Laplace transformation to obtain the 
approximate solutions (Monde, 2000). 

 
Approximate Equation of Inverse Problem Solution  
The approximate equations for surface temperature and 
heat flux can be obtained by performing inverse Laplace 
transformation of Eqs. (9) and (11) as: 
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The coefficients of C j, 12, C j, 21, D j, 12, D j, 21, W(a2), 
Y(a2) in Eqs. (14) and (15) are listed in Appendices I 
and II. When we set a2 = 0, all coefficients of W(a2) and 
Y(a2) become 0. Then, Eqs. (14) and (15) become the 
approximate ones for the initial temperature distribution 
θ0 being constant (or 0). In other words, the 
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approximate equation for the initial temperature with 
linear temperature distribution is the same as that with 
constant temperature distribution. 

It should be noted that the initial temperature 
distribution has been held in the finite plane but it is 
never held in the semi-infinite body. Therefore, the 
effect of initial temperature condition is not necessary to 
be discussed. 
 
Procedure to Solution in Cylindrical and Spherical 
Coordinates 
How to obtain the inverse solutions in cylindrical and 
spherical coordinates are explained here briefly, since 
they are identical to the method for rectangular case. 
 

The initial temperature distributions at a steady state 
can be expressed in cylindrical and spherical 
coordinates as: 

2
2100 ln)( ξξξθ aaa ++=                    (16) 

2
2100 /)( ξξξθ aaa ++=                     (17) 

And the inverse solutions of surface temperature and 
heat flux on cylindrical coordinate can be expressed as, 
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where, K1,1(s), K1,2(s), K2,1(s), K2,2(s) are called “the 
kernels” of Eqs. (18) and (19) (See Appendix II), the 
functions of F2 (a0, a2, s) and G2 (a1, a2, s) are related to 
the initial temperature. 
 

For spherical coordinate, likewise, the surface 
temperature and heat flux are also expressed as: 
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where, K1,1(s), K1,2(s), K2,1(s), K2,2(s) are the kernels 
(See the Appendix II) and the functions of F3 (a0, a1, a2, 
s) and G3 (a1, a2, s) are related to the initial temperature. 
 
Approximate Inverse Solution for Cylindrical and 
Spherical Coordinates 
The approximate equations for the surface temperature 
and the heat flux are obtained by performing the inverse 

transformation on Eqs. (18) and (19) for cylindrical 
coordinate and Eqs. (20) and (21) for spherical 
coordinate, which are in a similar form of Eqs. (14) and 
(15). Each coefficient of C j, 12, C j, 21, D j, 12, D j, 21, W and 
Y is listed in Appendices I and II. 
 
When we replace W(a2) and Y(a2) by Wc(a2) and Yc(a2) 
for cylindrical coordinate and by Ws(a2) and Ys(a2) for 
spherical coordinate, respectively, and let a2 = 0, then all 
coefficients of Wc(a2), Yc(a2), Ws(a2) and Ys(a2) become 
0 like rectangular coordinate. It is worth mentioning 
finally that the inverse solutions for constant initial and 
linear temperature distributions become identical. 
Characteristic of Inverse Solution in Cylindrical and 
Spherical Coordinates 
In case of treating with the temperature change for 0≤ ξ�
< 1 in cylindrical and spherical coordinates, the 
boundary condition at ξ = 0 always becomes ∂θ/∂ξ= 0. 
Therefore, number of measuring point included in Eqs. 
(18) and (19) and Eqs. (20) and (21) is reduced to one. 
 
   Consequently, these inverse solutions thereby 
become simpler than Eqs. (18) and (19) and also Eqs. 
(20) and (21), but predict worse estimation than those. 
The reason is that even though the boundary condition 
of ∂θ/∂ξ = 0 is exact, this point is the furthest from the 
other surface. Therefore, according to Monde (2000), it 
is of significance to choose the measuring point as close 
to surface as possible for getting better estimations from 
the measured temperature.  
 
   As for these problems, how the approximate 
solution is influenced by position of temperature 
measurement will be discussed later. 
 
Approximate Solution for Semi-Infinite Body 
General solution for semi-infinite body is easily 
obtained by setting A = 0, a1 = a2 = 0 in Eq. (5), since 
there is no initial temperature distribution in it at steady 
state. The finite and semi-infinite plates are different in 
number of unknown variables, the former has one and 
the latter has two. Therefore, one measuring point is 
enough for semi-infinite plate. Now, when the 
temperature distribution is given by, for example, Eq. 
(12) at ξ = ξ1, one can determine the representative 
function of unknown constant B. The equations for 
surface temperature and heat flux can be given as 
follows: 

∫ ∑∞+

∞−
=

+−=
ic

ic

N

k

k

k
ps

w dssbee
i 0

)1
2

(

1,
)( /

2
1)( 1

*
1 ξττ

π
τθ           (22) 

∫ ∑∞+

∞−
=

+−=
ic

ic

N

k

k

k
ps

w dssbpee
i

Φ
0

)1
2

(

1,
)( /

2
1)( 1

*
1 ξττ

π
τ         (23) 

We first expand the integrand 1ξpe  in a series around 
s = 0, and then we perform inverse Laplace 
transformation to give the surface temperature and heat 
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flux as: 
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   Semi-infinite body can be also assumed in 
cylindrical and spherical coordinates, but we did not 
consider this case, since it is seldom used in engineering 
field. 
 
PROCEDURE TO DETERMINE COEFFICIENTS 

IN EQ. (12) 
 
The coefficient, bk,n, in Eq. (12) can be determined from 
the measured temperature, for example, by the least 
mean square method. Then the coefficients are greatly 
subject to significant digit of the data or precision of 
measured values, what level of data's accuracy is used is 
important. Generally speaking, the measured 
temperature includes some uncertainty. Therefore, the 
simulated measuring temperature calculated from the 
exact solution can be expressed as: 

@)005.01)(,(),( ετξθτξθ += nexactn
, n = 1, 2      (26) 

where, θexact (ξn,τ) is the exact solution for the 
corresponding boundary condition, and m and σ are 
average and standard deviation for a random value of 
respectively. It should be noted to remember that 
accuracy in a temperature measured by using 
thermocouple would be generally expected to be a 
significant digit of 2 or 3. 
 
   There is another method except for Eq. (26), which 
is cut-off to the second decimal place, but it is 
commonly way to employ Eq. (26) in which a certain 
disturbance is superposed on the exact solution. It was 
reported (Monde, 2000) the solution obtained by Eq. 
(26) is worse approximation than by cut-off method.  
 
   Figure 2 shows the temperature response measured 
at a point and the approximate curves given by Eq. (12) 
with a different value of N. From Fig. 2, the 
approximated solution is improved with an increase in N, 
but it would be saturated around N = 5 ~ 7 beyond 
which the improvement is not expected greatly. 
Therefore, the order of approximate equation can be 
considered to be N = 7 at most. 
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Fig. 2 Approximate curve for temperature change at 

a point 
 

INVERSE SOLUTION AND REPRESENTATIVE 
PROBLEMS 

 
Method for Calculation 
The procedure to solve inverse problems is: 
1. Determine each coefficient of bk,n in Eq. (12) 

obtained from the temperature at the point of ξ1 or 
ξ2 by the least mean square method. 

2. Expand the kernels of solution obtained by 
performing Laplace transformation around s = 0 in 
a series in which the coefficients are summarized in 
Appendix II. 

3. Calculate coefficients given by multiplying 
coefficients in Eq. (12) and the coefficients of the 
kernel, which are summarized in Appendix II. 

4. Perform inverse Laplace transformation, and 
calculate explicitly the surface temperature and heat 
flux using Eqs. (14) and (15), (18) and (19), (20) 
and (21). 

 
Representative Problems 
The approximating solutions for several boundary 
conditions are reported by Monde (2000), Monde et al. 
(2000). We here, investigate about five representative 
combinations of initial temperature distributions and 
boundary conditions as listed in Table 1, which were not 
included in the papers of Monde (2000), and Monde et 
al. (2000). 

 
Inverse Solution Calculated 
Figures 3 (a) to (d) show comparisons between the exact 
solution of surface temperatures and the corresponding 
estimated solutions for the cases 1, 2, 4 and 5. Figures 4 
(a) and (b) show comparisons between the exact 
solutions of heat flux and corresponding estimated ones. 
The value of N in Figs. 3 (a) to (d) and Figs. 4 (a) to (b) 
means the order of approximate equation and the values 
of ξ1 and ξ2 corresponding to the position of the 
measuring point in the solid. And, the temperatures at 
each measuring point were obtained by Eq. (26). 
Figures 3 and 4 show that the estimated solutions 
approach to the exact solution with increase in the value 
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of N. 
 
Table 1 Boundary condition and exact solution 

(For all cases, finite body) 
Case Boundary condition (0<τ) Parameters 

1 

(1st B.C.) 

θ (τ) = 1: ξ = 0 

θ (τ) = 0: ξ = 1 

θ = 0: τ = 0 

θ = T/T0 

Φ = q L /λΤ0 

2 

(1st B.C.) 

θ (τ) = τ: ξ = 0 

θ (τ) = 0: ξ = 1 

θ = 0: τ = 0 

θ = T/T0 

Φ = q L /λΤ 

3 

(2nd B.C.) 

Φ (τ) = 1: ξ = 0 

Φ (τ) = 0: ξ = 1 

θ = 0: τ = 0 

θ = Tλ/q0L 

Φ = q/q0 

4 

(3rd B.C.) 

))((Bi τθθ
ξ
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∞−=
∂
∂ , 

θ
�

(τ) = 1: ξ = 0 

0=
∂
∂
ξ
θ : ξ = 1 

θ = 0: τ = 0 

θ = T/T0 

Φ = qL/λT0 

5 

(1st B.C. 

with I.C.) 

θ (τ) = 1: ξ = 0 

θ (τ) = 0: ξ = 1 

θ = ξ2: τ = 0 

θ = T/T0 

Φ = q L /λΤ0 
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EVALUATION OF ESTIMATED V

 
Minimum Predictive Time 
It is mathematically proved (Alifanov, 19
1985) that no inverse solution exists at 
solution can converge beyond a limiting ti
a minimum predictive time is an impor
evaluating the inverse solution. One m
minimum predictive time, τ1 at which in
first satisfies within a relative difference of
less than 1 %) between the exact and 
values and from which the solution is vali
shows the minimum predictive time for
against the value of N. It is found from Ta
minimum predictive time is hardly influen
cases 3 and 4 by the value of N. However,
and 4, the value of N larger than 5 doe
influence the minimum predictive time. 
 
 
Table 2 Minimum initial time (ττττ1) e

error of 0.01 for ξξξξ1 = 0.05, ξξξξ2 = 
condition; θθθθ = 0 ) 

N case1 case2 case3 case
3 0.0050 0.0057 0.0233 0.009
4 0.0050 0.0057 0.0317 0.006
5 0.0050 0.0056 0.0189 0.007
6 0.0050 0.0047 0.0093 0.005
7 0.0050 0.0076 0.0059 0.005
8 0.0051 0.0057 0.0056 0.005

 
Table 3 Standard deviation (σ σ σ σ ) (initial con
 

N case1 case2 case3 case
3 0.0029 0.0091 0.0050 0.005
4 0.0030 0.0093 0.0020 0.001
5 0.0031 0.0093 0.0018 0.001
6 0.0029 0.0093 0.0008 0.000
7 0.0026 0.0094 0.0005 0.000
8 0.0022 0.0094 0.0005 0.000

 

Accuracy of Estimation 
In order to evaluate the accuracy of the inverse solution, 
 17 

.4 0.5

g point
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ced except for 
 in the cases 3 
s not almost 

stimated for 
0.10 (initial 

4 case5 
3 0.0050 
7 0.0050 
4 0.0050 
1 0.0050 
0 0.0050 
0 0.0051 

dition; θ θ θ θ = 0 ) 

4 case5 
6 0.0030 
6 0.0032 
2 0.0024 
7 0.0029 
2 0.0025 
2 0.0013 

we introduce standard deviation as: 

ττθτθ
ττ

σ
τ

τ
dcalwexactw∫ −

−
=

2
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2
,,

12

))()((
)(

1  

where τ2 is defined as 90 % of the end time of the 
measurement since its time was chosen to avoid an 
effect of the end time on the estimated temperature. 
Table 3 shows that the minimum standard deviation of σ 
= 0.003 appears at N = 6 beyond which the accuracy of 
prediction is not expected to improve any more. Taking 
into account the fact that the deviation in prediction 
reaches the same level as deviation of approximate 
equation, we cannot expect more accuracy in this 
method. In addition, it is found from Table 3 that the 
approximate equation at the order of N = 6 gives the 
most accurate solution.  

 
Estimated Solution of Surface Heat Flux 
It is concluded from Figs. 4 (a) and (b) that the inverse 
solutions for the surface heat flux obtained by using N = 
5 to 7 in Eq. (15) also agree well with the exact ones. 

 
Effect of Position of Temperature Measurement on 
Estimated Solution 
Figure 5 shows an effect of the position of the 
temperature measurement on the inverse solution for the 
case 3 when using N = 5. The position of ξ2 = 0.5 in Fig. 
5 corresponds to the farthest point from the surface in a 
finite body. 
 
   According to Fig. 5, the inverse solution for ξ1 = 
0.05 and 0.1 are in good agreement with the exact value, 
although for a ξ1 = 0.2 and 0.3, both the solutions and 
the time are not recommended because of a large 
deviation and delayed time. 
   On the other hands, the accuracy of prediction on 
these conditions is still the same as that for ξ1= 0.05 and 
ξ2 = 0.1 as shown in Fig. 3 (a) and Table 2, but the 
minimum predictive time becomes larger than that 
forξ1= 0.05 and ξ2 = 0.1. 
 
   Consequently, it may be recommended to choose the 
measuring points as close to the surface as possible to 
give a good estimation. In particular, the point ξ1 is 
recommended to be ξ1 < 0.1. On the other hand, we may 
recommend ξ1 ≤ 0.2 for the minimum prediction time. 

(b) 
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Fig. 5 Effect of measuring point on accuracy of 

solution (Case 3, Heat flux) 
 
Order of approximate equation of Eq. (12) 
It is found from Tables 2 and 3 that it is not expected 
any more even if increasing N to improve the accuracy 
of prediction and to reduce the minimum predictive time. 
Consequently, either value of N = 5 or 6 is 
recommended as the critical value. 
 
Effect of Temperature Change on Estimation 
The approximate equation for the surface temperature 
that its first derivative with respect to time becomes 
discontinues gives worse estimate than that for the 
surface temperature that its derivative is continues (See 
Monde, 2000 and Monde et al., 2000). In other words, 
for a smooth surface temperature change, the high 
accurate estimation can be reached. 
 

TWO-DIMENSIONAL INVERSE HEAT 
CONDUCTION PROBLEM 

 
For an isotropy rectangular system, two- dimensional 
heat conduction equation can be written in a 
non-dimensional form as: 

2

2
2

2

2

η
θ

∂ξ
θ∂

∂τ
∂θ

∂
∂+= L     10,10 <<<< ηξ      (27) 

 
General Solution for Two-dimensional Unsteady 
Heat Conduction 
Assuming a uniform initial temperature (θ = 0) and 
applying Laplace transform to Eq. (27), we can easily 
reform Eq.(27) into Eq.(28) in a subsidiary form as: 

02

2
2

2

2

=−
∂
∂

+
∂
∂

θ
η
θ

ξ
θ sL                       (28) 

A general subsidiary solution becomes:  

{ }
{ })/sin()/cos(

)sin()cos(),,(
LnDLnC

mBmAs
ηη

ξξηξθ
+

+=           (29) 

where m and n are undetermined constants and possess 
a relation confined by m2 + n2 = -s. The constants of A, 
B, C and D are integral constants subjected to surface 
condition. The four unknown constants here need four 
individual boundary conditions for four surfaces to 

close the equation. To simplify the question, we here 
consider two simplest cases only. 
 
Insulation on Three Surfaces 
As one of the simplest boundary conditions, three 
surfaces are insulated as given by the following 
equations and only one surface is left unknown, which 
corresponds to the IHTP solution.  

1,0,0 ==
∂
∂ ξ
ξ
θ                              

(30-a) 

 1,0 ==
∂
∂ η
η
θ                               

(30-b) 

A general solution that satisfies Eq. (30) becomes as: 

∑
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= 
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
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)1(cos)cos(),,(
j

j
jj L

n
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where mj (= jπ) is eigenvalue to satisfy Eq. (30-a) and 
cos(mjξ) is the corresponding eigenfunction. The 
unknown constant Bj is going to be determined by using 
the temperature distribution measured on one plane η = 
ηl inside the solid. 

 
Insulations on Two Surfaces 

If we assume that the surfaces at ξ = 0, 1 are insulated 
and that the boundary conditions on surfaces η = 0, 1 
are unknown, that is, the known surface conditions: 

 1,0,0 ==
∂
∂ ξ
ξ
θ                                

(32) 
then general solution of Eq.(29) turns to: 

)}/cos()/sin(){cos(),,(
0

LnBLnAms j
j

jj ηηξηξθ += ∑
∞

=

 (33) 

where mj (= jπ) and cos (mjξ) are still the same 
eigenvalue and eigenfunction, respectively, since the 
same boundary conditions on ξ = 0, 1 are set for Eq. 
(29) to be satisfied. The two unknown constants Aj and 
Bj are going to be determined by the measured 
temperatures on two different planes (η = ηn, n = 1, 2, 
η1 < η2) inside the solid. 
 
Approximate Equation Depicting Temperature 
Variation on A Plane of ηηηη =  =  =  = ηηηηn (n = 1, 2) Inside The 
Solid 
Temperature variations with time along coordinate ξ on 
a plane of η = ηn (n = 1, 2) may be approximated from 
Eq. (34), in which the temperature variation with time is 
expressed by a half polynomial series. 

2 1, n    )(
)12/(

)(),,(
0

2/* =−
+Γ

= ∑
=

N

k

k
n

k
n k

bgf ττξτηξ    (34) 

   There are two reasons allowing us to adopt the form 
of half polynomial series of time here: (1) the general 
solution of heat conduction possesses the item of root of 
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time; (2) one dimensional IHTP, which used the form of 
half polynomial series of time in temperature 
approximation, has achieved great success. In Eq. (34), 
a time lag,  τn*, is determined by erfc(ηn /2√τn*) = 
min(θ), where min(θ) is a minimum readable division of 
temperature-measuring instrument. 
 
   Expanding g(ξ) in Fourier series by using 
eigenfunction, cos(mjξ), we can get the following 
equation: 

∑∑
=

∞

=

−
+Γ

=
N

k

k
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k

j
jjn k

b
mCf

1

2/*

0
)(

)12/(
)cos(),,( ττξτηξ  (35) 

   As the most natural thought, one may expect the 
coefficients in Eq. (35), i.e., Cj and bk, being solved 
separately by using, for example, the least mean square 
method. Unfortunately, the determined approximation 
function turns to be two-dimensional regression planes 
of ξ and τ and separate determination of Cj and bk is 
impossible. To solve the problem, here we introduce 
coefficient Dj,k to substitute Cj and bk. Eq. (35) then is 
reformed to: 
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Applying Eq. (36) to the temperatures measured at the 
points on η = ηn (n = 1, 2), we can have the coefficient 
Dj,k determined. Then performing Laplace 
transformation to Eq. (36), we can get in a subsidiary 
form as:  
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(37) 

Characteristics of Approximation Equation 
Equation (36), which is used to approximate the 
temperatures measured on the plane of η = ηn, is 
determined by using Fourier series composed of 
eigenfunction of cos(jπξ). As a characteristic of Fourier 
series, the increase of the employed eigenvalue 
generally improves its approximation. As a result, a 
requirement of a higher order of eigenvalue leads to an 
increase of the measuring points, which may allow us to 
encounter another difficulty in actual measurement and 
a complicate procedure in determining the coefficients 
of D(n)

j,k. In addition to these, from the viewpoint of 
measurement with a thermocouple, the measured 
temperature always includes some uncertainty, for 
example, uncertainties of a level from 0.1 to 1 %. 
Therefore, the number of eigenvalue, Nj, would be 
restricted to a limited value, which will be discussed 
later. 
 
   Apart from the number of eigenvalue Nj, it is 
necessary to discuss the number of terms related to time. 
Monde (2000) recently reported that for the case of 

one-dimensional IHTP, the number of N, which is order 
of half polynomial series of time used in approximating 
temperature change, is recommended to range from 5 to 
8, beyond which no improvement is expected. 
 
Calculation of Surface Temperature 
Applying Eq. (31) or Eq. (33) to η = ηn (n = 1 or 2) and 
setting them equal to Eq. (37), we can have the 
coefficients of Bj in Eq. (31) or Aj and Bj in Eq. (33) 
determined, depending on the number of the unknown 
surface. After some manipulations, we can finally 
express the solution for the temperature change in the 
solid (including surfaces) in subsidiary forms as: 
for boundary condition that three surfaces are insulated 
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for boundary condition that two opposite surfaces are 
insulated 
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Substitution of n = i√(s+mj
2) into cos(n/L) and 

sin{n/L(η2-η)} reforms them into cosh{√(s+mj
2)/L } 

and i sinh{√(s+mj
2)/L}, respectively. Taking account 

into these relations and setting η = 0 in Eq. (39), we can 
obtain the surface temperature as: 
for boundary condition that three surfaces are insulated 
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for boundary condition that two opposite surfaces are 
insulated 
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Expanding Hyperbolic functions in Eqs. (40) and (41) in 
series around s = 0 and then performing inverse Laplace 
transformation, we can get the surface temperatures for 
the two different kinds of boundary condition as:  
for boundary condition that three surfaces are insulated 
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for boundary condition that two opposite surfaces are 
insulated 

∑ ∑

∑ ∑

= −=

= −=

−
+Γ

−

−
+Γ

=

j

j

N

j

N

k

kjkj

N

j

N

k

kjkj
w

k
mG

k
mG

0 1

2/*
2

)1,2(
,

0 1

2/*
1

)2,1(
,

)(
)12/(

)cos(

)(
)12/(

)cos(
),(

ττ
ξ

ττ
ξ

τξθ        (43) 

Detailed procedure to calculate these coefficients in 
Eqs. (42) and (43) in noted in appendix. 
 
Calculation of Surface Heat Flux 
By differentiating Eqs. (38) and (39) with respect to η,   
the heat flux in η direction can be derived and then the 
surface heat flux is achieved by setting η = 0: 
for boundary condition that three surfaces are insulated 
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for boundary condition that two opposite surfaces are 
insulated 

{ }
{ }

{ }
{ }

)cos(

))((sin

)(cosh)(

)cos(

))((sinh

)(cosh)(
),(

0
)12/(

)2(
,

0 12
2

1
22

0
)12/(

)1(
,

0 12
2

2
22

2

1

ξ

ηη

η

ξ

ηη

η
ξ

τ

τ

j

N

k
k

kj

N

j j

jjs

j

N

k
k

kj

N

j j

jjs
w

m
s
D

Lms

LmsLms
e

m
s
D

Lms

LmsLms
esΦ

j

j

∑

∑

∑

∑

=
+

=

−

=
+

=

−

×

−+

++
−

×

−+

++
=

∗

∗

  (45) 

Just as the same as what we did in deriving the surface 
temperature, in achieving the surface heat flux, we also 
need to expand Hyperbolic functions in Eqs. (44) and 
(45) in series around s = 0 and perform inverse Laplace 
transform. The surface fluxes for the two different kinds 
of boundary condition are finally expressed as:  
for boundary condition that three surfaces are insulated  
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for boundary condition that two opposite surfaces are 
insulated 
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Detailed process to derive the coefficient in Eqs. (46) 
and (47) is found is Appendix III. 

 
Discussion on Approximate Equation for 
Temperature Variation 
Using Eqs. (40) and (41) and Eqs. (46) and (47), we can 
predict the surface temperature and heat flux explicitly. 
However, just as the same as what we discussed in 
one-dimensional IHTP (Monde, 2000), when the 
Laplace operator s is high enough, Eq. (37) has a 
characteristic of becoming divergence. As concerned 
with the inverse Laplace transformation, there exists a 
minimum time, only after which the inverse solutions 
(Eqs. (42) and (43) for surface temperature and Eqs.(46) 
and (47) for surface heat flux) become applicable. In 
another word, it is possible for the inverse solution near 
s = 0 to predict the surface temperature and heat flux 
after the minimum time τmin. 
 

SIMPLE EXAMPLES FOR VERIFICATION OF 
THE PRESENT METHOD 

 
   In order to verify the applicability of Eqs. (42) and 
(43) and Eqs. (46) and (47), we need the temperatures 
measured on a plane of η = ηn (n = 1, 2). Here, the 
temperatures calculated from a direct solution, which is 
derived for a given boundary condition mentioned 
below, are used as the measured temperatures. If the 
boundary conditions are that the surfaces on ξ = 0, 1 or 
even on η = 1 are insulated as given by Eq. (32) or Eq. 
(30) and the left surface of η = 0 is given by either Eq. 
(48-a) or (48-b), which will correspond to the IHTP 
solution, 

(6) θ = 1, 0 < ξ < 0.5, θ = 0, 0.5 < ξ < 1.0, η = 0  (48-a) 

(7) Φ = 1, 0 < ξ< 0.5, Φ = 0, 0.5 < ξ < 1.0, η = 0 
                                            
(48-b) 

then, direct solutions for the surface condition of cases 
(6) and (7) on η = 0 can be obtained, respectively. 
 
   The exact value of the temperatures on any plane of 
η = ηn (n = 1, 2) are easily calculated from the direct 
solution. As actual temperatures measured on η = ηn 
always include some uncertainty, we may superpose 
normal random error on the exact value of the 
temperature as given by the following equation similar 
to the one-dimensional case:  

)105.01)(,,(),,( ετηξθτηξθ sfN
nexactn

−⋅+=          (49) 

and then we determine the coefficients of D(n)
j,k in Eq. 

(36) using the temperature given by Eq. (49) in which 
Nsf is the order of significant figure and ε is normal 
random error having average value of m = 0 and 
standard deviation of σ = 1. 
 
   Figure 6 shows the variation of temperatures on η  = 
0.01 calculated from Eq. (49), for example, for the 
boundary condition (case 6) given by Eq. (48-b). These 
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temperatures on η  = 0.01 are used to determine the 
coefficients of D(n)

j,k in Eq. (36). Figure 7 shows the 
temperatures approximated by Eq. (36), in which the 
determined coefficients of D(n)

j,k is used. 
 
NUMERICAL CALCULATION RESULTS AND 

DISCUSSIONS 
 

   Figures 8 and 9 show the surface temperature 
estimated by Eq. (43) and the surface heat flux 
estimated by Eq. (47) for the case (7). Figure 10 shows 
the surface temperature estimated by Eq. (42) for the 
case (6). The temperatures used in the calculations are 
on two planes of η1 = 0.01 and η2 = 0.05 and the 
measuring points on each plane are set at 30. In addition, 
orders of Nj and N in Eq. (36) are set at 30 and 5, 
respectively. The order of significant figures is set at Nsf  
= 3, which can be considered an enough error level that 
is included in a measurement of temperature with a 
thermocouple. 
 
   Figure 11 shows the surface heat flux for the case 
(7) estimated by Eq. (46) by using the temperatures only 
on one plane of η1 = 0.01. The orders of Nj, N and Nsf 
are kept as the same as that used in the previous 
calculation, that is, Nj = 30, N = 5 and Nsf = 3. 
 
   It may be necessary to mention that for the case (6), 
the temperature on the surface possesses a discontinuity 
point at ξ = 0.5 so that the surface heat flux obtained by 
differentiating the temperature with respect to η does 
not converge uniformly at ξ = 0.5. Consequently, the 
predicted surface heat flux at ξ = 0.5 is, of course, 
divergent. Under such circumstance, as shown in Fig. 10, 
only the prediction to the surface temperature is possible 
from the inverse solution. 

  
   Finally, it may be worth mentioning that although 
the surface temperature for the case (7) predicted from 
Eq. (42), which is not illustrated here, is a little inferior 
to that predicted from Eq. (43), it is much better than the 
predicted surface heat flux as shown in Fig. 11. 
 
   It is concluded from a comparison of Figs. 9, 10, 
and 11 that the inverse solutions obtained from two 
measuring planes can estimate the surface temperature 
as well as the surface heat flux at much higher accuracy 
than those obtained from only one measuring plane. 
How the relative positions of the two planes (η = ηn) 
affect on the predictive accuracy would be expected as 
one of the future researches. 

 
Discussion to the Prediction Result 
Figure 9 shows that the surface temperature estimated 
by Eq. (47) approaches to the given surface temperature 
and agrees it with an error of a few percent after a time 
whose Fourier number becomes 0.02. As for the surface 
temperature estimated by Eq. (43), it is found from Fig. 

10 that the whole surface  

 
Fig. 6 Temperature change in a solid at ηηηη1 = 0.01 

calculated from Eq. (49) for the case (7) 

 
Fig. 7 Temperature approximated by using Eq. (36) 

at ηηηη1 = 0.01 for the case (7) 

 
Fig. 8 Surface temperature estimated by Eq. (43) for 

the case (7) 
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Fig. 9 Surface heat flux estimated by Eq. (47) for the 

case (7) 

 
Fig. 10 Surface temperature estimated by Eq. (43) 

for the case (6) 

 
Fig. 11 Surface heat flux estimated by Eq. (46) for 

the case (7) 

temperatures are well predicted inside an error band of 
1%, although the estimated surface temperature seems 
slightly deviating from the given temperature near the 
discontinuity point of ξ = 0.5. Whereas for the case (7), 
because there exists no discontinuity of the temperature 
at any point on the surface as what we may have already 
observed from Fig. 8, the inverse solution, Eq. (43), 
predicts the surface temperature very well within an 
error band of 1%. However, the existence of the 
discontinuity point for the surface heat flux at ξ = 0.5 
makes accuracy of its prediction degrade obviously and 
the estimated values present an error near to 10% 
around ξ = 0.5, as shown in Fig. 9. The whole 
prediction, however, despite of the existence of the 
discontinuity point, is still found of satisfactory 
accuracy. 

To the cases (6) and (7) listed above, the inverse 
solutions of Eqs. (43) and (47) are found being capable 
of predicting the surface temperature and heat flux in an 
error band from 3 to 5%. As a general, from doing 
comparison to Figs. 9 and 10, we can find that the 
prediction to the surface temperature is better than that 
to the surface heat flux. The reason is analyzed due to 
the temperature disturbance included in Eq. (49) being 
enlarged in the calculation of the heat flux, where the 
temperature difference is needed between the measuring 
points. 
 
Influence of Discontinuity Point 
As shown in Figs. 9 and 10, a degradation of prediction 
accuracy is observed near the discontinuity point. The 
reason is attributed to the employment of the Fourier 
series in the temperature approximation Eq. (36). In 
other words, the Gibbs phenomenon, which is a 
characteristic phenomenon in the Fourier series, is 
aroused near the discontinuity point of ξ = 0.5. From 
engineering point of view, a problem of discontinuity 
generally doesn’t exist because usual boundary 
condition always possesses no discontinuity point. In 
another word, for actual engineering condition that 
possesses no discontinuity point on boundary, the 
proposed IHTP solution can be anticipated for high 
prediction accuracy.  

 
Influence of Degree of Eigenvalue Employed in Eq. 
(36) 
The improvement of the temperature approximation 
accuracy in Eq. (36) is considered being the most 
important and effective way to improve the accuracy of 
the whole IHTP solution. As a most natural 
consideration, the increase of the number of eigenvalue 
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Nj may lead to the improvement of temperature 
approximation accuracy and consequently the 
improvement of the accuracy of the whole IHTP 
solution. To check a possible influence of the number of 
eigenvalue Nj, we increase the number to 40. However, 
no obvious improvement of the accuracy that is 
expected accordingly is observed. The reason is 
attributed to the uncertainties included in the measured 
temperatures, from which the coefficients in Eqs. (36) 
and (37) are determined. In another word, accuracy 
improvement from the increasing of the number of 
eigenvalue may be counteracted by the uncertainties 
included in the measured temperatures. Therefore, in 
spite of any increase in the number of eigenvalue, the 
approximation accuracy cannot be improved 
significantly. The influence of Nj on the accuracy  

 
Fig. 12 Surface heat flux estimated by Eq. (47) 

for the case (7) with an error of Nsf = 2 

 
Fig. 13 Surface heat flux estimated for the case 

(7) without error by Eq. (47) 
therefore associates to the error included in the 

measured data greatly. In the future, the accuracy 
improvement due to the increase of Nj needs to be 
examined by concerning the accuracy of the measured 
temperature. 
 
Influence of the Temperature Measurement 
Accuracy  
To check the influence of the accuracy of the measured 
temperature over prediction result, we set the order of 
significant figure Nsf in Eq. (49) at 2, 3 and � 
(error-free). Corresponding results are shown in Figs. 12 
and 13, respectively.  
����

When Nsf is 2, as shown in Fig. 10, the prediction 
result is much poor than that when Nsf is set at 3. The 
predicting error is about 20%. And the IHTP solution 
calculated from error-free temperature, as shown in Fig. 
13, still possesses an error about 4%, which is almost as 
the same as that calculated from Nsf = 3. The influencing 
tendency tells us an importance of the measured data at 
high accuracy. In actual measurement, although the 
measured temperature definitely includes some 
uncertainty, an effort of employing high precision 
instrument may lead directly to an improvement of 
predicting accuracy for the IHTP solution. 

 
CONCLUSIONS 

 
By using the Laplace transformation technique, we 

achieved two-dimensional IHTP solutions and 
following results: 
1. Surface temperature can be predicted well over the 

whole surface within an error of a few percent, if it 
changes continuously. 

2. The minimum predictive time for the proposed 
IHTP solution is τ = 0.02.   

3. In order to predict the surface temperature and heat 
flux from the proposed IHTP solution successfully, 
a high precision instrument that can ensure 
measured temperature at uncertainty level less than 
0.1 %, namely Nsf = 3 at least, is recommended. 
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NOMENCLATURE 

 
Aj,n :coefficient  
a :thermal diffusivity  [m2/s] 
a0, a1, a2 :coefficient of initial temperature 

distribution 
Bj :coefficient 
bk :coefficient  
Dj,k :coefficient derived from measured 

temperature variation 
f1(τ), f2(τ) :function of non-dimensional temperature at 

a point of ξ1, ξ2 
f(ξ, ηn, τ) :function for approximating temperatures 

on plane η = ηn inside a solid 
L :aspect ratio (=Lx/Ly) 
Lx :length of a solid in x direction 
Ly :length of a solid in y direction  
m :average for a value of ε  
min(θ) :minimum of significant number or 

minimum division of measuring equipment 
mj :eigenvalue (mj= jπ) 
N :degree of approximate polynomial with 

time 
Nj :degree of eigenvalue 
Nsf  :order of significant figure 
n :constant ( 2msi += ) 
p := √s 
q :heat flux  [W/m2] 
qo :heat generated per volume unit [W/m3] 
R :characteristic length on the cylindrical and 

spherical coordinate [m] 
s :Laplace operator (= p2 or = - (m2 + n2 )) 
T :temperature  [K] 
T0 :characteristic temperature [K] 
t :time   [s] 
x, y :x and y coordinates, respectively 

   [m] 
Wr, Wc, Ws :influence functions of initial temperature 

for rectangular, cylindrical and spherical 
coordinate  

Yr, Yc, Ys :influence functions of initial temperature 
for rectangular, cylindrical and spherical 
coordinate 

ε :random error varying from –1 to 1 
Φ :non-dimensional heat flux 
Φ  :subsidiary value of Φ 
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Γ(n) :gamma function 
θ :Non-dimensional temperature 
θ  :subsidiary value of θ  
θo :initial temperature (distribution) 
τ :non-dimensional time 

 (Fourier number = at/L2 , at/R2 or at/Lx
2 ) 

τ1 :minimum predictive time 
τ1

* :non-dimensional time lag 
  ( )min()2/( * θτξ =iierfc ) 

ξ :non-dimensional length 
  ( = x/L, r/ R, ξ1 < ξ 2 or  x/Lx) 

η                  :non-dimensional distance in y direction 
  ( = y/Ly), η1 < η2) 

σ :standard deviation 
 
Subscript 
1,2 : Measuring temperature 
c : Cylindrical coordinate 
r : Rectangular coordinate 
s : Spherical coordinate 
w : Surface 
 
Appendix I 
Functions for initial temperature distributions 
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Appendix II.  
Expansion equation for one-dimensional IHTP 
The subsidiary form obtained after executing the 
Laplace transformation function can be abbreviated into 

)()( Kfθ
. The inverse Laplace transformation of this 

subsidiary function becomes as: 

∫
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In the present analysis, we first expand the functions 
K(s) around s = 0 in a series, and then obtained the 
solution by executing complex integration. The 
subsidiary functions of the surface temperature and heat 
flux expressed the kernel K(s).  
 
(a) Finite body 
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where, A1=A2= 2a2 corresponds to rectangular, A1=A2= 
4a2 to cylindrical one, A1= 6a2ξ1, A2= 6a2ξ2 to spherical 
one 
 
(b) Semi-infinite body 

Surface Temperature: )()( 31 sKsf=θ  

Surface heat flux   : )()( 41 sKsfΦ =  

where, functions of F (s) and G (s) are related to initial 
temperature distribution (See appendix I). 
 
(1) Expansion equation for finite body 
Expansions of the kernel K1,n(s), K2,n(s) (n=1, 2) around 
s = 0 in a series for several coordinates are given as: 
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where, the coefficients xi,,n and yi,n are defined in Table 
A1 (a) to (c), and function hj is also defined by the 
following equations, where gi is shown in Table A1. 
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We can express the surface temperature )(swθ and 
heat flux )(sΦw

 using these coefficients in a subsidiary 
form as 
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The coefficients Cij, and Dij are the same coefficient of 
Eqs. (14) and (15). 

 
(2) Expansion equation for the case of semi-infinite 
body����
Expansions of the kernel K1 (s), K2 (s) around s = 0 in a 
series are given as: 
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We can express the surface temperature )(swθ and 

heat flux )(sΦw
 using these coefficients in a subsidiary 
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The coefficients Uj and Vj are the same coefficients of 
Eqs. (24) and (25). 
 
Appendix III 
Expansion equation for two-dimensional IHTP 
 
(a) For the condition that insulations are done on three 
surfaces 
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(b) For the condition that insulations are done on two 
opposite surfaces 
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always written in a common form as: 
 

∑
∞

=

=
0

)(
,

)(
,1

)(
,1 )(

n

nl
jn

l
j

l
j scCosK       l = 1, 2  

∑
∞

=
=

0

)(
,

)(
,2

)(
,2 )(

n

nl
jn

l
j

l
j sdCosK       l = 1, 2 

The coefficients cn, j and dn, j are written as: 

2,11
0

)(
,

0

)(
, == ∑

=
− lhx

g
c

n

i
in

l
ji

l
jn

 

2,11
0

)(
,

0

)(
, == ∑

=
− lhy

g
d

n

i
in

l
ji

l
jn

 

where hj is calculated from following listed equations. 
The calculation to the employed item gj and coefficients 
xi,,j, yi,j are listed in Table A3� 
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With rearrangement, )(swθ and )(sΦw are derived as: 

(1) For the condition that insulations are done on 
three surfaces 
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where Gj,l and Hj,l are coefficients of Eqs.(42) and (46), 
respectively. 
 
(2) For the condition that insulations are done on two 
opposite surfaces 
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where Gj,l and Hj,l are coefficients of Eqs.(43) and (47), 
respectively. 
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*1: Z1, Z2 and Z12 are given as: 
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where, I0 and I1 are modified Bessel functions of the first kind. 
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    Table A1(c) Kernel K(s) in spherical coordinate, these coefficients in its series and common terms used in its series 
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Table A2 Kernel K(s) and its coefficients in its series 
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Table A3 Kernel K(s) and its coefficients 
(1) For the condition that insulations are done on three surfaces 
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(2) For the condition that insulations are done on two opposite surfaces 
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